Reflections on UEFI and
The Task of the
Translator

The art of binary golf - elegant assembly language programming,
malware art, and using cross-architecture UEFI quines as a framework
for UEFI exploit development

Nika Korchok Wakulich (ic3qu33n)
Dartmouth CS59, Guest Lecture, Fall 2024

C:\>

DISCLAIMER:

The views expressed in this l[_)resentation are my own and

do not reflect the opinions of my past, present or future
employers

Viewer Discretion is advised.

L s e S s Sls s S S S AR P00

whoami

Twitter: @nikaroxanne

Mastodon: ic3qu33n@infosec.exchange
Website:

GitHub: @ic3qu33n and @nikaroxanne
bsky: @ic3qu33n

Security Consultant at Leviathan Security Group

Reverse engineer + artist + hacker

| <3 UEFI, hardware hacking, binary golf, binary exploitation,
skateboarding,

learning languages, making art, writing programs in assembly languages,
etc.

greetz 2 the following for their support w this talk:
Oday (@0day_simpson), netspooky (@netspooky), dnz (@dnoiz1), zeta
Xeno Kovah (@xenokovah), Alex Matrosov (@matrosov), Emily
The team at Leviathan

Sergey Bratus and Dartmouth

https://ic3qu33n.fyi/projects/mySuperSweet16BitMalwareMSDOSEdition

Prior work: malware art

REcon 2023

H
e
o
e,
o0
C
0
=
!r!
e,
ajd
©
£
-
©
LL)
oC
O
Q
@)
-
L,
Q
i e
O
=

uw Know L_l.].U.U HE’

HOX0ELD HO X0 ,

W0 M0 g
1Q?qu33

~michelangelo reanlmator

ﬁgeneratlon 1-1337 e PR S5

:'-'..r" .-*'- .

..

u know u luy me
XKOX0
icdgudan

REcon 2024

GOP Complex

L IRRRAL AL 00000 LLL00E

____ | ____ B o
__ ‘____ ______. i ._______ 1 ___ ______::____
__= ______.. 0 0000t _______—_ [

e

- H _————_ ____
1 e et a - .
——_—_— ————_ ——_—__ _—————_ _—_—— ——_—_ —— _ _ ——— _—_ _— I
e .ilt's — _ — - H q - -—
" e v . . A [w0 _
_ ——_—_ _———__ ——_——_ _—————_ ————__ __———— _————_ _— _—_ _ — _. |
- s - -- . _ - . . . I—
| " 0N =t " f . A ' h _
. _——— _ —__—_ _—_—__ _————_ ————__ _—————_ _————_ __———— _ _——_ — — _. — |
] L = ¥ _ _ b Ot 1 .—_
— —_ __ _——_——— — —_ _——— —_—— _ | . _ [T | | | I il

Format of this Talk

This is a talk about translation, the art of binary golf and UEFI malware art

1. Assembly language programming across architectures
2. The art of binary golfing

3. Applications of “The Task of the Translator” to UEFI/Low-level firmware
exploitation, xdev and malware art

Format of this Talk

This is a talk about translation, the art of binary golf and UEFI malware art

Part 1. Assembly language programming across architectures
UEFI Quines (self-replicating UEFI apps) in three architectures:
x86-64, arm64, EBC

Part 2: The art of binary golfing

Part 3: Applications of “The Task of the Translator” to UEFI/Low-level firmware exploitation
Case study: the evolution of an SMM exploit

From simple Chipsec PoC to standalone malicious driver [brief overview]

Definitions

Notes on terminology [This is a talk about translation after all]

* Binary golf: the art of writing the smallest program that performs a
specific task

e e.g. A self-replicating program (quine), famously featured in the
paper “Reflections on Trusting Trust” by Ken Thompson

* Quine: a self-replicating program

 Formally “a program whose output is a copy of its own source code

* Binary Golf Grand Prix: an annual competition focused on the art of
binary golfing, challenge specs/target/theme changes annually

* PoC: Proof of Concept

* Exploit: a program/PoC that successfully leverages a vulnerability in a
piece of software/hardware/system/etc. to cause a desired outcome

* Exploit development (aka “xdev”): the process of writing a working PoC
for a vulnerabillity

“Binary Golf Grand Prix,” https://binary.golf/

netspooky

https://binary.golf/

Housekeeping

Notes on terminology [This is a talk about translation after all]

“EBC isn’t an “architecture,” it’s a platform agnostic
intermediary language that leverages natural-indexing to
automatically adjust its instruction width to either 32-bit or
64-bit dependent on the architecture of the host machine. It
uses a VM! That sounds like ring -1 to me!”

| know. But referring to it as an architecture at this point in
the talk is sufficient for our understanding of EBC in relation
to the narrative. And it’s more succinct. We’'ll get to EBC

and the spec. Hang tight.

Wait... is the architecture arm64? Or aarch64? Or is it
AArch64? Aarch64? ARM647? Arm64? Which is it?
Team Edward or Team Jacob??

arm64 is the term | will use in this presentation to refer to
the assembly language of the Armv8 64-bit architecture,
known as ARM64/AArch64

What is “The Task of the Translator”

An essay by Walter Benjamin

 Walter Benjamin was a philosopher, cultural
critic, essayist

* Other famous works by Benjamin:
“The Work of Art in the Age of Mechanical
Reproduction”
The Arcades Project

* His essay “The Task of the Translator” was a
seminal work in translation theory

* For this presentation, I'll be referring to Steven
Rendall’s English translation of Benjamin’s essay:
https://german.yale.edu/sites/default/files/
benjamin translators task.pdf

Walter Benjamin (1892-1940) ~1930 © Charlotte Joel

https://german.yale.edu/sites/default/files/benjamin_translators_task.pdf
https://german.yale.edu/sites/default/files/benjamin_translators_task.pdf

What is “The Task of the Translator”

in UEFI?

A framing device for understanding how to write cross-architecture exploits

Combine the work of four separate projects using the framework of Walter Benjamin’s

“Task of the Translator”

1. UEFI Exploit Research and
Development at Leviathan —>
SMM exploits

eviathan

security group

3. OST2 ARM Assembly class —>
UEFI exploit dev on arm64

1A=

B . FYI

2. BGGP4 and UEFI binary golfing —>
UEFI quines N

4. VX-Underground Black Mass article —>
EBC

o or
BNy, He U. u N u. ‘BEbu.
6. ik e O6Ex ueGS . 3668 966 - L WOk uee ‘*$666abY
~BE5E 4= S383 ~83% 21 832 "ESEEf . e BEEN 1383F8 .BER Y388 3=3 A=g3se” ATAZEE3N
B Lo | XXEX KX XEKK AKEN> " (2= M HEX> "1 p.b8.) . L5+ et "EXXL
L3 <=3 25 8383 a3 fRR88 4388y 237§ 83 ' as8 3% R3F3 &RRF R3S
853 == YEEs SR vy L5 1 8 Huy> uuy = BYR yauyE PEEL BUEL
BB, 6883 %56 8 . 3588L [1253 a63L 3 6358 G6BE BaaF
“YEEES S383Y 3= “agEs 2N T EEBE 2338 . g8g3es =3 maZEact LSEBN. 838

s o .. - bt - ot - "*BBge""

- “ERRF -
4353 -

How do we apply “The Task of the Translator” to UEFI?

Apply “the Task of the Translator” to two tasks:

1. Translating my winning BGGP4 UEFI| quine from x86-64 asm to two other
architectures: arm64 and EBC

2. Developing one exploit for an SMM callout vulnerabillity, then creating new

generations of that exploit, altering the technique used, the language the exploit is
written, the architecture it targets, etc.

One goal of optimization is to eliminate redundancy. Are we creating redundancy??

No, this isn’t redundant work.

I’m not creating *copies™ of the original UEFI app (the UEFI| app already creates copies
of itself)

“Translation is a mode. In order to grasp It as such, we have
to go back to the original.”

Walter Benjamin, “The Task of the Translator,” translated by Steven Rendall, page 152.

How do we apply “The Task of the Translator” to UEFI?

Notable examples to set the precedent

Developing a “next generation” for a piece of art:

e crdsh - SmmBackdoorNg (Smm Backdoor Next Generation):
https://github.com/Cr4dsh/SmmBackdoorNg

e See crdsh’s earlier project SmmBackdoor:
https://github.com/Cr4dsh/SmmBackdoor

o Star Trek [with the notable exception of Leonard Nimoy, Leonard Nimoy is
eternall

https://github.com/Cr4sh/SmmBackdoorNg
https://github.com/Cr4sh/SmmBackdoor

What is “The Task of the Translator’ in UEFI xdev?

Research questions

 How can we use binary golfing to further develop a work of art, an exploit?

« How does one UEFI exploit differ when it is translated across multiple
different architectures?

» How does my artistic practice and creative projects with UEFI graphics
programming inform and enhance my work in UEFI RE and exploit
development?

 \WWhat can architecture-specific requirements for an exploit teach us about
how to approach finding vulnerabilities and writing new gnarly exploits?

 How many different ways can we write an exploit for a specific vulnerability?

e What is the task of the translator?

The art of binary golf

Binary golfing as an art form
Mini-golf v2.0

| love writing programs in assembly languages

Binary golfing pushes this further and asks the question: how small can you make your
code?

What is the most elegant solution to a problem?

Binary golfing is a demanding art form, but when an artist/hacker is determined to create
something, they will find creative ways to bypass restrictions, and work with (rather than

against) extreme constraints

The result of this process often leads to innovation and great art

Binary golfing as an art form

Techniques

* File format tricks - manipulation of headers, use of “dead code” regions as location for
holding

 Assembly language programming tricks — variations in opcodes to fit constraints
e e.g. polymorphic printable ASCII shellcode

 Compilation tricks: self-compilation, linking against stripped executables etc.

e Variations in playing with syscalls for Linux binaries

* Application of sound, graphics programming technigues in new+strange+fun ways

 Many more!

Binary golfing as an art form

Resources

Netspooky’s series on ELF binary mangling

Part 1: https://n0.lol/ebm/1/

Part 2: https://n0.lol/ebm/2/

Part 3: https://n0.lol/ebm/3/

Part 4: https://tmpout.sh/2/11.html

LibGolf by xcellerator: https://tmpout.sh/1/1.html

Netspooky’s series on PE binary mangling:

Golf Club, netspooky: https://github.com/netspooky/golfclub

Size coding: http://www.sizecoding.org/wiki/Linux

https://n0.lol/ebm/1/
https://n0.lol/ebm/2/
https://n0.lol/ebm/3/
https://tmpout.sh/2/11.html
https://tmpout.sh/1/1.html
https://github.com/netspooky/golfclub
http://www.sizecoding.org/wiki/Linux

Binary golfing as an art form

ELF Binary Mangling Pt. 1: Concepts

(C 00)) (00)(o00).-.((00)) \ (00) (00)) (00) (00)
[: 2018-98-07 :] \ 2 (=== o= SN - — A A e ())
e e I T R B [N W) [I S
Jkay, S0 you want to see how small you can meke & 54 bit bilnary. In the sge of glant bloated I Y I Ao A B R | =t /). AP I R W
gppolications full of impossibly convoluted machine instructions, =ating up your memory snd disk || 19 “;\| |- |1 | | | . (oo \ / | | (] — .o)
space, it’s nice sometimes to get down to the lowest of low levels and creste something so tiny, | ! ,/ O = | ! ,/ - | ! } |] A || I) \
that you know what every single bit Is doing and it's purpose. To do so, we need to employ sume J T ,/ ! "_;J ! J ! J N ,/ J T ,/ ':/ ,/'——) J ! J _'—;\\ ,/
standard tricks and a little creativity to get us down there. o TTmETEE T T T T -_ T T eElIIRA
~ xcellerator
Building Your Binary Ahoy, Fellow ELF devotees! In this article, I want to introduce a small library 1've been working

on called LibGolfF. It started out as simply a vehicle fFor better understanding the ELF and program

; headers, but has since spun into something reasonably practical. It makes is very easy to generate
Let’'s start with a reallu simple program that prints a string 1n the terminal! I chose these smallzsr a binary consisting of an ELF header, Fol%owed by a single program header, followed by a single
Jpcodes to save a bit more space, but we can get into assembly optimization in another post. loadable segment. By default, all the Fields in the headers are set to sane values, but there's a

simple way to play with these defaults - and that's what this article is all about! I'm going to
demonstrate how I used LibGolf to enumerate precisely which bytes are necessary and which are

L ignored by the Linux loader. Fortunately, it turns out that the loader is one of the least picky
c i parsers amon? the standard Linux toolkit. Before we're through, we'll see several popular static
3 .global _start analysis tools crumble before our corrupted ELF, while the loader continues to merrily load and
4 . text jump to our chosen bytes.

5 _start:

6 mov 31, *al RAX holds syscsll 1 [writ2), I chose to use Q= e — ————————— +

7 al, which is the lower 8 bits of the *rax |--[Introducing LibGolF]--|

8 register. From @ binary standpoint, there B Stes— +

9 15 less spacc used to rcpresent this than 2 . .

10 miy $1, “rax

11 mov AreX, irdi ROI holds File Handle 1, STDOUT. Thic means ELF Blnalﬂg Mangllng SEP].ES

12 that we are writing to ths screen. Apain,

13 maving RAX tc RDI is shorter than

14 using mov %1, “rdi . -07- .

15 mov $asg, irsi RSI holds the zddress of our string buffer. [: 2021-07-07 :]

16 mov 311, “dl ROX hnlds the size our nf string bu fer. . ’ > h ‘

17 Moving into 2d]l to save snace. This is a blog series about making super small ELF binaries.

16 syscall Invoke a syscall with these argumenzs.

13 mov 36€, #al Nouw we are invoking syscall 68. The record set in EBM4 was beaten in 2023 by 1m978, who produced an 80 byte x86_64 ELF by using
20 ®or Arci, #rdi Zero out RDI, which holcs the return value. ET DYN instead of ET EXEC.
21 syscall Call the system again t0 2xit. = 3
22 msg:

23 .ascil "["2"] u!i\n" Elf Binary Mangling Pt. 4: Limit Break // 2021-07-07

An 82 byte ET_EXEC ELF for x86_64. Later published in tmp.out 2

1L003+

Check out these amazing resources by my
friends!

ELF Binary Mangling Pt. 3: Weaponization // 2018-12-16
Making tiny ELFs destructive

netspooky’s series on ELF binary mangling

ELF Binary Mangling Pt. 2: Golfin // 2018-12-909
Creating an 84 byte ELF for x86_64 with nasm

©." |[ELF Binary Mangling Pt. 1: Concepts // 2018-08-07

LibGolf by xcellerator = "linat’s in an ELF anyuays?

UEFI Binary Golfing

tips + tricks

* The offsets of data structures in UEFI are consistent, so if we know which data structure + protocol we want to
target, we can write a test program to find those offsets, then define them with macros in our final exploit

* e.g. BootServices-> HandleProtocol is at offset 0x98 in the EFI_BOOT_SERVICES table
 We will have easy access to data structures right away:
 e.g.on x64, EFI_SYSTEM_TABLE * is in RDX and EFI_IMAGE_HANDLE is in RCX upon program invocation

* We can also target other data structures/protocols (i.e. EFI_FILE_PROTOCOL for file operations,
EFI_SIMPLE_FILESYSTEM_PROTOCOL for filesystem operations, etc.) to hook/inject our payload

* In-depth knowledge of relevant file formats for UEFI binary executables (mainly PE, occasionally TE) can be
used to shrink code size and minimize reliance on external libraries

* In-depth knowledge of PE format essential for determining how to patch UEFI binaries into valid EBC UEFI
apps/drivers

A brief introduction to UEFI

Introduction to UEFI

In the beginning there was legacy BIOS

BIOS: Basic Input-Output System

* BIOS is platform firmware responsible for configuring hardware and preparing a
system before loading an operating system

 tl;dr BIOS is the software responsible for properly setting up your computer when it
turns on

Legacy BIOS: The non-stardardized standard for BIOS implementations prior to the
mainstream adoption of UEFI

Introduction to UEFI

In the beginning there was legacy BIOS

And now we have UEFI| and everything is fine! And there are no more vulnerabilities and
Secure Boot wasn'’t just a marketing strategy for a feature that was never intended as a
security feature of UEFI in the first place!

FOOO:FFF@ Jmp far ptr bootblock start

FOOO:FFAA bootbhlock start:
FOOO:FFAA Jmp exec Jmp table

FOOO :A040 exec_Jmp_table: -

FOOO:A040 jmp _CPU_early_init

FOOO'AD43 ; -----ccccccccccncncccccccccccccccccccncccnncccccnccccncncnnncns
FOOO:AD43

FOOO:A043 _j2: -

FOOO:A043 Jmp _goto_ 33

Source: “BIOS Disassembly Ninjutsu Uncovered: Listing 5.27 AMI BIOS Boot Block Jump Table,” 1st
edition, Darmawan Salihun (pinczakko), page 60, https://github.com/pinczakko/BIOS-Disassembly-
Ninjutsu-Uncovered

https://github.com/pinczakko/BIOS-Disassembly-Ninjutsu-Uncovered
https://github.com/pinczakko/BIOS-Disassembly-Ninjutsu-Uncovered

Introduction to UEFI

In the beginning there was legacy BIOS

And now we have UEFI| and everything is fine! And there are no more vulnerabilities and

Secure Boot wasn’t just a marketing strategy for a feature that was never intended as a
security feature of UEFI in the first place!

Oh... wait, never mind.

https://darkmentor.com/timeline.html

vel::;-feier | Interfaces O0S-Absent

App

\ N

B ;

-) TransientOS
\ _,,m Environment

o
=
@
>

) ()
TransientOS
BootLoader
EFIDriver ~ Boot OS-Present

| Dispatcher __Manage App
\, Intrinsic | |

: | Final OS Final OS
(Semcs l BootLoader Environment
security |

Security | PreEFI Driver BootDev Transient After
(SEC) |Initialization Execution Select SystemLoad Life

(PEI) Environment (BDS) (TSL) (AL)
(DXE)

Poweron—-—[. . Platform initialization..] =——[....0S boot....]

Shutdown

Figure 9 UEFI PI boot flow

Source:
“Trusted Platforms UEFI, Pl and TCG-based firmware,” Vincent J. Zimmer (Intel Corporation), Shiva R. Dasari Sean P. Brogan (IBM), White

Paper by Intel Corporation and IBM Corporation, September 2009
https://www.intel.com/content/dam/doc/white-paper/uefi-pi-tcg-firmware-white-paper.pdf

https://www.intel.com/content/dam/doc/white-paper/uefi-pi-tcg-firmware-white-paper.pdf

Introduction to UEFI

Legacy BIOS Reverse Engineering

FOOO.:AGBE call near ptr copy decomp block
BIOS code was written in 16-bit FO00 A0 EREENEESEDOHR Y
assembly and it ran in real mode FOOO:A21B copy_decomp_block proc far ; _FOO00:_j27
FOEO:A21B mov al, oD5h ; '-' ; Boot block code is copied.
Legacy BIOSes were non- : ggg ro1R coM to 1 X 4 control
: o : - 0 lower system memory and contro
.Standardlzed.’ BV SpeCIfIC FOOO:A21B ; 1s given to it. BIOS now executes out of
implementations FOOO:A21B ; RAM. Copies compressed boot block code
FOOO:A21B ; to memory in right segments. Copies BIOS
Legacy BIOS was responsible for FOOO:A21B ; from ROM to RAM for faster access.
important functionality— F0005A218 , Performs main BIOS chec;ksum, and updates
C ere 1 : f platform hardware in FOOO:A21B ; recovery status accordn)gly. .
'mt'ahzat]on Ot platic FOOO:A21D out 86h, al ; Send POST code D5h to diagnostic port.
preparation for loading an OS — FOOO:A21F push es
but it was limited in scope and size FOOO :A220 call get_decomp_block_size ; On return:
FOOO :A220 ; ecx = decomp_block_size
“ : FOOO:A220 ; esl = decomp_block_phy_addr
Refer to "BIOS Dlsaf,sembly FOOO : A220 : At this point, ecx = Ox6000
Ninjutsu Uncovered” by Darmawan FOOO :A220 ; and esi = OXFFFFAQOO
Salihun (pinczakko) for the holy i%gﬁgg mOVh egx, esl
- : push ebx
scripture of Legacy BIOS RE + xdev FOOO:A228 shr ecx, 2 ; decomp_block size / 4
FOOO:A22C push 8000h

——— - e e —

Source: “BIOS Disassembly Ninjutsu Uncovered: 5.2.3.2. Decompression Block Relocation,” 1st edition,
Darmawan Salihun (pinczakko), page 62, https://github.com/pinczakko/BIOS-Disassembly-Ninjutsu-
Uncovered/blob/master/BIOS Disassembly Ninjutsu Uncovered.pdf

https://github.com/pinczakko/BIOS-Disassembly-Ninjutsu-Uncovered
https://github.com/pinczakko/BIOS-Disassembly-Ninjutsu-Uncovered
https://github.com/pinczakko/BIOS-Disassembly-Ninjutsu-Uncovered
https://github.com/pinczakko/BIOS-Disassembly-Ninjutsu-Uncovered/blob/master/BIOS_Disassembly_Ninjutsu_Uncovered.pdf
https://github.com/pinczakko/BIOS-Disassembly-Ninjutsu-Uncovered/blob/master/BIOS_Disassembly_Ninjutsu_Uncovered.pdf
https://github.com/pinczakko/BIOS-Disassembly-Ninjutsu-Uncovered/blob/master/BIOS_Disassembly_Ninjutsu_Uncovered.pdf

Introduction to UEFI

RE advantages of UEFI over Legacy BIOS

* Rich ecosystem of built-in functionality

UEFI follows implementation standards with detailed and
comprehensive spec [obvious caveats, it’s not perfect but wow
look at those diagrams. AMI never gave me a diagram </3]

* source code primarily written in C following a standardized
specification —> easier to debug / disassemble

A selection of great plugins and tools for UEFI RE + xdev:

* UEFITool: https://github.com/LongSoft/UEFITool

» efiXplorer: https://github.com/binarly-io/efiXplorer

* Ghidra plugins:

» efiSeek: https://github.com/DSecurity/efiSeek

* ghidra-firmware-utils: https://qgithub.com/al3xtjames/
ghidra-firmware-utils

* UEFI has expansive breadth + depth —> greater attack
surface

https://uefi.org/specs/UEFI/2.10/07 Services Boot Services.html#device-handle-to-protocol-handle

First Handle
\

Device Handle
GUID
Interface
Protocol
Interface

Device Handle
GUID
Interface
Protocol
Interface

Image Handle
Controller Handle
Attributes

Image Handle
Controller Handle

Attributes

Image Handle
Controller Handle
Attributes

Image Handle
Controller Handle
Attributes

Image Handle
Controller Handle
Attributes

GUID
Interface

Protocol
Interface

Image Handle
Controller Handle
Attributes

Source: “UEFI Specification, Fig.7.2 Handle Database”

manmninan

https://github.com/LongSoft/UEFITool
https://github.com/LongSoft/UEFITool
https://github.com/binarly-io/efiXplorer
https://github.com/binarly-io/efiXplorer
https://github.com/DSecurity/efiSeek
https://github.com/DSecurity/efiSeek
https://github.com/al3xtjames/ghidra-firmware-utils
https://github.com/al3xtjames/ghidra-firmware-utils
https://github.com/al3xtjames/ghidra-firmware-utils
https://github.com/al3xtjames/ghidra-firmware-utils
https://github.com/al3xtjames/ghidra-firmware-utils
https://uefi.org/specs/UEFI/2.10/07_Services_Boot_Services.html#device-handle-to-protocol-handler-mapping
https://uefi.org/specs/UEFI/2.10/07_Services_Boot_Services.html#device-handle-to-protocol-handler-mapping

Introduction to UEFI
UEFI apps/drivers + UEFI shell

 UEFI Shell: A UEFI application that
provides a shell interfacing for 9
interacting with various UEF!
components (i.e. other UEFI apps and
drivers, and the protocols therein)

 UEFI apps and drivers are PE/COFF
executables (occasionally TE) and
have a PE/COFF header

UEFI / Pl Interfaces
« The only difference between an UEFI
app and a UEFI driver is that an app is
unloaded from memory after it is run
and a driver remains resident until it is Figure 3.6: Anatomy of an application launch
unloaded

Source: “Harnessing the UEFI Shell: Moving the Platform Beyond DOS, 2nd edition,”
Vincent Zimmer, Michael Rothman and Tim Lewis

Introduction to UEFI

Protocols

* Protocols are the keys to the HandleProtocol (GUID, ...)
empire '

 UEFI is the empire ~
» A protocol is an interface that nvoking one of Protocol Interface II chodfic
functions

encapsulates data and ihe protoco i i
function pointers I
I] Device, or
_ next Driver
Protocol
specific

 Provide abstractions for g
hardware/firmware/OS
communications

* A driver can produce one or
more protocols

Source: “UEFI Specification: Fig. 2.4 Construction of a Protocol”
https://uefi.org/specs/UEFI/2.10/02 Overview.html#construction-of-a-protocol

functions

https://uefi.org/specs/UEFI/2.10/02_Overview.html#construction-of-a-protocol

Introduction to UEFI

Protocols Example: LoadedimageProtocol

EFI_HANDLE ParentHandle
 VOID'imageBase

|
3
|

|
%

“True translation Is transparent, it does not obscure the
original, does not stand In its light, but rather allows pure
language, as if strengthened by its own medium, to shine

even more fully on the original.”

Walter Benjamin, “The Task of the Translator,” translated by Steven Rendall, page 162.

UEFI generation 1: x86-64

UEFI generation 1: x86-64
The Specs

My winning entry in the UEFI app BGGP4: REPL ICATE
. . BGGP4: REPL ICATE
category of Binary Golf Grand Prix 4 BGGP4: REP L ICATE
BGGP4: REPL ICATE
— 06.23.23 -> 09.08.23 —
« BGGP: “The goal of the Binary —goal
GOlf Grand P”X IS tO Cha”enge Create the smallest self-replicating file. |—
programmers to make the
smallest possible binary tr,]at fits enuiremente
within certain constraints. o valid submiceion will
[Source “Binary Golf Grand Prix” - Produce exactly 1 copy of itself
) - Name the copy ''4"
netspooky, https://n0.lol/bggp/] B retern o Bienlad he nunber 4

|
Source: “Binary Golf Grand Prix 4,” Binary Golf Association, https://binary.golf/

https://n0.lol/bggp/%5D

UEFI generation 1: x86-64

Methodology

1. Write a valid working solution (a self-replicating UEFI app) in C

2. Use the C solution as a base text and translate the quine from C to assembly —> Reverse
engineer the C solution

3. Golf the assembly solution and shrink the size of the binary as much as possible
4. Reverse engineer, rewrite and refactor the assembly

Size of C quine: ~17,000 bytes

Final size of x86_64 asm UEFI quine: 1480 bytes

[Side note: shoutout to my friend @netspooky who | worked with on this project for teaching me PE
binary mangling. Check out his fantastic write-up on his recent solution that set the new record to
420 bytes: https://github.com/netspooky/golfclub/tree/master/uefi/bggp4]

https://github.com/netspooky/golfclub/tree/master/uefi/bggp4

UEFI generation 1: x86-64

RE and development tools

nasm
Hex editor (xxd, hexdump)

Ghidra, specifically using these two plugins for UEFI:
e efiSeek: https://qgithub.com/DSecurity/efiSeek

* ghidra-firmware-utils: https://github.com/al3xtjames/ghidra-firmware-utils

Radare?2 for a faster option, better for disassembling and other reversing tasks near the
end of the project that involved nitty gritty changes to the assembly

QEMU and gdb for debugging/testing

| didn’t use IDA Pro for this project, it’'s a better tool for other projects

https://github.com/DSecurity/efiSeek
https://github.com/al3xtjames/ghidra-firmware-utils

UEFI generation 1: x86-64

UEFI x64 - Handoff state upon program invocation

rcx - EFI_HANDLE

ﬁush rbp
mov rbp, rsp

rdx - EFI_SYSTEM_TABLE" sub rsp,

mov [ImageHandle], rcx
mov [gST], rdx

rsp - <return address>

mov rbx, [gST]

mov rbx, [rbx +]
Source: UEFI Specification - oV [g8S], b
2.3.4.1. Handoff State nov rax, [rax+ 0xi0]

Program entry point - setting up stack frame, saving gST, ImageHandle
Use gST to save gBS and ConOut

UEFI Interactive Shell vZ2.2
EDK II
UEFI v2.70 (EDK II, @x00010000)
Mapping table
FSO: Alias(s):HD@al: ;BLK1:
PciRoot(@x0)/Pci(@x1,0x1)/Ata(®x®)/HD(1,MBR,OxBE1AFDFA,@x3F,@0xFBFC1)
BLK®: Alias(s):
PciRoot(0x0)/Pci(@x1,0x1)/Ata(@x0)
BLKZ: Alias(s):
PciRoot(@x0)/Pci1(@x1,0x1)/Ata(@x0)
IPress ESC in 3 seconds to skip startup.nsh or any other key to continue.
[Shell> fs0:
FSO:\>

Base text:
Self-replicating UEFI app

Written in C

UEFI generation 1: x86-64

x64 self-replicating UEFI app - program logic breakdown

mov rbx, [gBS] get_sfsp: ~ get_root_volume: 2
mov rdi, E;bx +H6x2§]] 8BS->1 :g: rb:, Egsz% HandLe] ; params gassed 1n rcx, rdx, r8, r4, rld mov rax, [SimpleFilesystemProtocol] openagss:;;leirOOt volume]
MOV rcx, [imagerandie » para o -eane : + EFI_SIMPLE_FILE_SYSTEM_PROTOCOL_OPENVOLUME_OFFSET ‘ -
;1this is how we're passing the GUID so that it works :g: :z: {;?; leFilzz stemFrotoEgl? -PROTOCOL_O OLUME_OFFSET] mov rax, [rax + EFI_FILE_PROTOCOL_OPEN_FILE_OFFSET
“:this i ' ' ¢ dword [rbp-0x60],0x964e5b22 ' P 4 mov rcx, [root volume]
;:this is how we're passing the GU] WOV Svoe Pt iiusens ’ lea rdx, [root_volume] ' _V
lea r8, [LoadedImageProtocol] MQV W?Tg [r?p’ng‘]’ g*il~z, call rax lea rdx, [hos§f11e]
mov dword [rbp-0x40], Ox5blb3lal mov: wo gr§ﬁiiﬁiglao§3ul“ cmp qword [rax], byte 0x0 lea r8, hostfilename
mov word [rbp-0x3c], 0x9562 mov rax, ©x3b7269C9c002393e » mov r9, [fileopen_mode]
mov [rbp-Ax58], rax jne printerror
mov word [rbp-0x3a)], Ox11d2 p-vixoad, mov rl1@, [hostattributes]

lea rdx, [reop-0x6d)

lea r8, [SimpleFilesystemFrotocal]

mov r9, [Imcgekandle]

xor r1Q, ~12

mov rax, [rox & 0x98] ;g8S->HandleProtccol ()
call rax

cmp gwort [rax], byte 2x0

jne printerror

mov rax, Ox3b/7269c¢9abo03f8e
mov [rbp-0x38), rax

lea rdx, [rbp-0x40)

mov r9, [ImageHandle]

call rdi

cmp qword [rax], byte 0x0
jne printerror

call rax
cmp qword [rax], byte 0x0
jne printerror

open_targetfile:
mov rax, [root_volume]
mov rax, [rax + EFI_FILE_PROTOCOL_OPEN_FILE_OFFSET]
mov rcx, [root_volume]
mov qword [rbp - Ox78], Ox@
lea rdx, [rbp-0x78]

close_file:

mov rax, rl3 lea r8, targetfilename
mov rax, [rax + EFI_FILE_PROTOCCL_CLOSE_FILE_OFFSET] mov r9, Ox8060000000000003
mov rcx, ri3 mov qword [rsp+0x20], Ox0
call rax call rax

cmp gword [rax], byte @x0 cmp qword [rax], byte 0Ox0
jne printerror jne printerror

ret

mov rax, [rbp-0x78]
rgetfile], rax

—e e

free_tmp buffer:
mov rl3, [targetfile]

call close file write_targetfile:
mov rbx, [gBS) mov rax, [targetfile] read hostfile: allocate tmp buffer:
mov rax, [rbx + EFI BOOTSERVICES FREEPOOL OFFSET] mov rax, [rax + EFI_FILE_PROTOCOL_WRITE_FILE_OFFSET] mov rax, [hostfile] mov rax, [gBS]
mov rcx, [temp buffer) a B mov rcx, [targetfile] mov rax, [rax + EFI_FILE_PROTOCOL_READ_FILE_OFFSET] mov rax, [rax + EFI_BOOTSERVICES_ALLOCATEPOOL_OFFSET)
call rax lea rdx, [ImageSize] mov rcx, [hostfile] mov rcx, [EFI_ALLOCATEPOOL_ALLOCATEANYPAGES)
cmp qword [rax], byte 0x0 mov r8, [temp_buffer] lea rdx, [ImageSize] mov rdx, [ImageSize)
jne printerror mov r8, [temp_buffer] lea r8, [temp_buffer]
call rax call rax
mov ri13, [hostfile] cmp qword [rax], byte 0x0 call rax cmp qword [rax], byte 0x0
call close file jne printerror cmp qword [rax], byte 0Ox0 jne printerror
xor r13, ri3 jne printerror
mov ri13, [root_volume) imp baibai

call close file

UEFI generation 1: x86-64

x64 self-replicating UEFI app - program logic breakdown

ﬁ
t_sfsp:
mov rbx, [gBS] ge :
mov rdi. [be + OX98] . ¢BS->HandleProtocol () mov rbx, [gBSJ : params passed in rcx, rdx, r8, r9, rl@
mov rcx, [ImageHandle] . params passed in rcx, rdx, r8, r9, ri@ mov rcx, [DeviceHandle]

;3this 1s how we're passing the GUID so that it works
mov dword [rbp-0x60],0x964e5b22,

mov word [rbp-0x5c], 0x6459,

mov word [rbp-9x5a], @x11dZ

mov rax, @x3b7269c9a@@039&e

mov [rbp-0x58], rax

lea rdx, [rbp-0x6@]

lea rd, [SimpleFilesystemProtocol]

, vthis is how we're passing the GUID so that it works
lea r8, [LoadedImageProtocol]

mov dword [rbp-0x40], Ox5blb3lal

mov word [rbp-0Ox3c], ©Ox9562

mov word [rbp-0Ox3a], BOx11d’

mov rax, 0x3b7269c¢9alee3f8e

mov [rbp-0x38], rax

lea rdx, [rbp-0x40] zg: :91)6 [r{ngeHandle]
cal r9,.[ImageHand1e] mov rax, [rbx + 9x98&] ; @BS->HandleProtocol ()
call rdi oy s

cmp qword [rax], byte Ox®

ine printerror cmp gword [rax], byte 9x@

jhe printerror

UEFI generation 1: x86-64

x64 self-replicating UEFI app - program logic breakdown

o oo ot

get root volume:
mov rax, [SimpleFilesystemProtocol]

mov rax, [rax + EFI SIMPLE FILE SYSTEM PROTOCOL_ OPENVOLUME OFFSET]
mov rcx, [SimpleFilesystemProtocol]

lea rdx, [root_volume]

call rax

cmp gword [rax], byte 0Ox0

jne printerror

UEFI generation 1: x86-64

x64 self-replicating UEFI app - program logic breakdown

open_hostfile: open_targetfile:

mov rax, [root_volume] mov rax, [root volume]

mov rax, [rax + EFI_FILE_PROTOCOL_OPEN_FILE_OFFSET] mov rax, [rax + EFI_FILE PROTOCOL OPEN FILE OFFSETI]

mov rcx, [root volume] mov rcx, [root_volume]

lea rdx, [hostfile] mov gword [rbp - 0Ox78], 0Ox0

lea r8, hostfilename lea rdx, [rbp-0x/&]

mov r9, [fileopen mode] lea r8, targetfilename

mov ri1@, [hostattributes] mov r9, Gx8GGOOO@@@OOOOQO3
mov gword [rsp+0x20], Ox6

call rax call rax

cmp qword [rax], byte 0Ox0 cmp gword [rax], byte 0x8

jne printerror jne printerror

mov rax, [rbp-0x/8]
mov [targetfile], rax

UEFI generation 1: x86-64

x64 self-replicating UEFI app - program logic breakdown

S

allocate tmp buffer: réad_hostiile: .
mov rax, [gBS] mov rax, [hostI11e]
mov rax, [rax + EFI_BOOTSERVICES ALLOCATEPOOL_OFFSET] m: :gi {;ﬁzmEE}I_FILE_PROTOCOL_READ_FILE_OFFSET]
:g: :;:, :E;;EQEEQE?TEPOOL_ALLOCATEANYPAGES] lea rdx. [ImageSizel
lea r8 ,[femp buffer] mov r8, [temp_buffer]
call rax a1l ra

cmp gword [rax], byte 0x6 cmp qword [rax], byte 0x@
jne printerror jne printerror

UEFI generation 1: x86-64

x64 self-replicating UEFI app - program logic breakdown

_

get root volume:
mov rax, [SimpleFilesystemProtocol]

mov rax, [rax + EFI SIMPLE FILE SYSTEM PROTOCOL_ OPENVOLUME OFFSET]
mov rcx, [SimpleFilesystemProtocol]

lea rdx, [root_volume]

call rax

cmp gword [rax], byte 0Ox0©

jne printerror

UEFI generation 1: x86-64

x64 self-replicating UEFI app - program logic breakdown

M

'

—

free tmp buffer:

mov rl13, [targetfile] close_file:

call close file mov rax, ri3

mov rbx, [gBS] mov rax, [rax + EFI_FILE_PROTOCOL_CLOSE_FILE_OFFSET]
mov rax, [rbx + EFI BOOTSERVICES FREEPOOL OFFSET] mov rcx, ri3

mov rcx, [temp buffer] call rax

call rax cmp gword [rax], byte 0x0

cmp qword [rax], byte 0Ox0 jne printerror

jne printerror ret

mov rl3, [hostfile]
call close file

xor rl3, ril3

mov rl1l3, [root _volume]
call close file

UEFI generation 1: x86-64

x64 self-replicating UEFI app - program logic breakdown

mov rbx, [gBS] get_sfsp: _ get _root_volume: —
mov rdi, [;bx +H0x3?] » gBS->F :gz :::, EgzsgceHandle] ; params passed in rcx, rdx, r8, r9, rl@ mov rax, [SimpleFilesystemProtocol] OPE“EESS::;IGiroot volume]
mov rcx, [ImageHandlel] » paran ! mov rax, [rax + EFI SIMPLE FILE SYSTEM PROTOCOL OPENVOLUME OFFSET . —
;;this is how we're passing the GUID so that it works [. 13 > o = . -] mov rax, [rax + EFI_FILE_PROTOCOL_OPEN_FILE_OFFSE
mov rcx, [SimpleFilesystemProtocol]
;ithis is how we're passing the GU] mov dword [rbp-0x60],0x964e5b22, lea rdx, [root_volume] mov rcx, [root_volume]
lea r8, [LoadedImageProtocol] mov wor: [rgp—gXSCJ, 8x$izg, call rax lea rdx, [hos;f11e]
mov dword [rbp-0x40], Ox5blb3lal mov wor 5"352223033993398 cmp qword [rax], byte 6x0 lea r8, ho§tf1lename
mov word [rbp-0x3c], Ox9562 mov rax, 9Yxso/coJcia e ; ; mov r9, [fileopen_mode]
b bp-@x58 jne printerror
mov word [rbp-0x3a], Ox11d2 mov [rbp-0x58], rax mov rl@, [hostattributes]
mov rax, 6x3b7269c9a0003f8e lea rdx, [rbp-0x60] call rax

lea r8, [SimpleFilesystemProtocol]

mov [rbp-0x38], rax cmp qword [rax], byte 0x0

lea rdx, [rbp-0x40] :g: :26 [ingeHandle] jne printerror
oY r9,.[ImageHand1e] mov rax, [rbx + 9x98] ;gBS->HandleProtocol()
call rdi call rax

cmp qword [rax], byte Ox®
jne printerror

cmp gqword [rax], byte 0x@
jne printerror

pen_ targetfile:
mov rax, [root valume]
mov rax, [rax + EFI_FILE_PROTOCOL_OPEN_FILE_OFFSET]
mov rcx, [root_volume]
mov gword [rbp - Ox78], Ox0
lea rdx, [rbp-0x78]

close_file:

mov rax, ril3 lea r8, targetfilename

mov rax, [rax + EFI_FILE_PROTOCOL_CLOSE_FILE_OFFSET] mov r9, Ox8000000000000603
mov rcx, ril3 mov gword [rsp+0x20], Ox8
call rax call rax

cmp gword [rax], byte 0x0 cmp qwgrd [rax], byte 0x8
jne printerror jne printerror

ret

mov rax, [rbp-0x/8]
rgetfile], rax

B ————

free_tmp_buffer:
mov rl3, [targetfile]

call close file write_targetfile:
mov rbx, [EBS] mov rax, [targethIEI read_hostfile: a]_locate_tmp_buffer:
mov rax, [rbx + EFI_BOOTSERVICES FREEPOOL_OFFSET] mov rax, [rax + EFI_FILE_PROTOCOL_WRITE_FILE_OFFSET] mov rax, [hostfile] mov rax, [gBS]
mov rcx, [temp_buffer] mov rcx, [targetfile) mov rax, [rax + EFI_FILE_PROTOCOL_READ_FILE_OFFSET] mov rax, [rax + EFI_BOOTSERVICES_ ALLOCATEPOOL_OFFSET]
call rax lea rdx, [ImageSize] mov rcx, [hostfile] mov rcx, [EFI_ALLOCATEPOOL_ALLOCATEANYPAGES]
cmp qword [rax], byte 0x0 mov r8, [temp_buffer] lea rdx, [ImageSize] mov rdx, [ImageSize]
jne printerror mov r8, [temp_buffer] lea r8, [temp buffer]
call rax call rax
mov r13, [hostfile] cmp qword [rax], byte 0x0 call rax cmp gword [rax], byte 0x®
call close_file ine printerror cmp gqword [rax], byte 0x0 jne printerror
xor ri3, ri3 jne printerror
mov r13, [root_volume] imp baibai

call close file

UEFI generation 1: x86-64

Golfing the solution ontrypaint:
.] push rbp
1. Remove unnecessary libraries b rsp,oxce
and dependencies: Use the mov [ImageHandle], rex

mov [gST], rdx
UEFI ecosystem
mov rbx, [gST]
mov rbx, [rbx +]
mov [gBS], rbx

2. PE Binary Mangling nov rax, [gST

y " mov rax, [rax +]
[netSpOOky S QUIde to PE mov [ConQut], rax
Blnary Mangllng: :g\\: :3)1(: Eggi]+ 1 ; gBS->HandleProtocol()

https://n0.lol/a/pemangle.html | parans passed in rcx, rdx, r8, r9, rie

mov rcx, [ImageHandle]

;5this 1s how we're passing the GUID so that 1t works

3. Use the protocols you want, mov dword Crop-0xia, oxsbls’
not the wrappers with extra v word [rop-0x3],
fluff: wov [rbp-0x38], rax
e.g. OpenProtocol() is a wov 15, Incgetandie
wrapper for HandleProtocol() cnp quord [rax], byte

jne printerror

First call to gBS function HandleProtocol in my winning BGGP4 entry

https://n0.lol/a/pemangle.html

UEFI Interactive Shell v2.2
EDK II
UEFI v2.70 (EDK II, 0x00010000)
Mapping table
FSO: Alias(s):HD@al: ;BLK1:
PciRoot(@x@)/Pci(@x1,0x1)/Ata(@x®)/HD(1,MBR,@xBE1AFDFA,@x3F,@xFBFC1)
BLK®: Alias(s):
PciRoot(0x0)/Pci(@x1,0x1)/Ata(@x0)
BLKZ: Alias(s):
PciRoot(@x0)/Pc1(@x1,0x1)/Ata(@x0)
IPress ESC in 4 seconds to skip startup.nsh or any other key to continue.

[Shell> fs0:
[FS@:\> 1s
Directory of: FS@:\
05/02/2024 06:41 1,540 self-rep-goli 1 [}
05/02/2024 06:41 17,856 ISe '
2 File(s) 19,396 bytes
@ Dir(s)
FSO:\>

Final winning entry for BGGP4:
Self-replicating UEFI app

Written In x64 assembly
https://youtu.be/MglEngr-1yY

https://youtu.be/MglEnqr-1yY

UEFI generation 1: x86-64

What did you learn at school today?

* | everage the UEFI ecosystem by
walking from Protocol interface to
Protocol interface —> better
understanding of UEFI internals and
base knowledge for building better
exploits

* Building ROP chains for SMM
exploits to bypass
Smm_CodeCheck_En

 New knowledge of PE Binary
Mangling

 Knowledge of how to write UEFI
shellcode

* even if you write an exploit in C,
knowing how to write UEFI
shellcode for a payload is
essential

PE:
header start:

mzheader:
dw ; DOS e_magic
dw
pe header:
dd uint32_t mMagic. // PE\OQ\® or ox00004550
dw uintle t mMachine;
dw uintlé t mNumberOfSections;
dd uint32 t mTimeDateStamp,;
dd uint32 t mPointerToSymbolTable;
dd , uint32 t mNumberOfSymbols;
dw sectionHeader - opt_header; wuintl6 t mSizeOfOptionalHeader;
dw uintlé t mCharacteristics;
opt header:
dw uintle_t mMagic
[Ox018b=PE32, 0Ox028b=PE32+ (64 bit)]
db uint8_t mMajorLinkerVersion;
db uint8 t mMinorlLinkerVersion,;
dd _codeend - codestart uint32_t mSizeOfCode;
dd dataend - datastart uint32 t mSizeOfInitializedData;
dd uint32 t mSizeOfUninitializedData,
dd entrypoint - START uint32z t mAddressOfEntryPoint,;
dd entrypoint - START uint32 t mBaseOfCode,;
dq uinti2 t mImageBase,
dd uint32 t mSectionAlignment;
dd uint32 t mFileAlignment;
dw uintlé t mMajorOperatingSystemVersion
dw uintle_t mMinorOperatingSystemVersion
dw uintlé t mMajorImageVersion;
dw uintle_t mMinorImageVersion;
dw uintlé_t mMajorSubsystemVersion;
dw uintle_t mMinorSubsystemVersion
can be blank, still times 4 db ©
dd uint32 t mWin32VersionValue;
dd end - START uinti2z t mSizeOfImage;

dd

dd header _end - header_ start;

uint32 t
uint3z_t
uintlée t
uintle t
uint32 t
uint3z2_t
uint3z t
uint32_t
uint3z t
uint32_t

mSizeOfHeaders;
mCheckSum;
mSubsystem;
mDl1Characteristics;
mSizeOfStackReserve;
mSizeOfStackCommit;
mSizeOfHeapReserve;
mSizeOfHeapCommit;
mLoaderFlags;
mNumberOfRvaAndSizes;

“The translator's task consists in this: to find the intention
toward the language into which the work Is to be translateq,
on the basis of which an echo of the original can be
awakened in it.”

Walter Benjamin, “The Task of the Translator,” translated by Steven Rendall, page 159.

UEFI generation 2: arm64

UEFI generation 2: arm64

The specs

 This is not an entry for BGGP4... what are the goals of this UEFI quine?
 Confirm that a UEFI quine is *possible* on Aarch64/ARM64 architecture
* [ranslate original x64 solution to valid working solution in armo64 assembly
* Golfing -> Optimize for small size to maximize benefit of shellcode

 What are the goals for this UEFI arm64 project?
 Advance mastery of arm64 assembly for teaching OST2 ARM Assembly class
* Practice writing UEFI shellcode in arm64 assembly

» Better understand the nuances of UEFI RE and exploit dev on arm64

UEFI generation 2: arm64

Methodology

1. Recompile my valid working solution (a self-replicating UEFI app) in C with
an armo4 (edk?2 calls it aarch64) toolchain under the edk? build system ->
working solution to use as a base template

2. Use the C solution as a base text and translate the quine from C to
assembly —> Reverse engineer the C solution

3. Reverse engineer, rewrite and refactor the assembly

_ _ Bonus Step O:
The task of the translator is to be a cross-compiler? Start with a
“Hello world”
UEFI app written
In armo4
assembly

UEFI generation 2: arm64

arm64 assembly building blocks: handoff state

X0 - EFI HANDLE
X1 -EFI SYSTEM TABLE
X30 - Return Address

Source: UEFI Specification - 2.3.6.2. Handoff State
https.//uefi.org/specs/UEFI/2.10/02 Overview.html#handoff-state-4

https://uefi.org/specs/UEFI/2.10/02_Overview.html#handoff-state-4

UEFI Interactive Shell v2.1
EDK II
UEFI v2.60 (EDK II, 0x00010000)
Mapping table
FSO: Alias(s):HD@b: ;BLK1:
PciRoot(0x0)/Pci(0x1,0x0)/HD(1,MBR, 0xBE1AFDFA, 0x3F, 0xFBFC1)
BLK3: Alias(s):
VenHw(FOBO94AE2-8BA6-409B-9D56-B9B417F53CB3)
BLK2: Alias(s):
VenHw(8047DB4B-7E9C-4COC-8EBC-DFBBAACACESF)
BLKO: Alias(s):
PciRoot(0x0)/Pci(0x1,0x0) [}
[Press ESC in 5 seconds to skip startup.nsh or any other key to continue.
Shell>

Base text: Self-replicating UEFI app
Written in C, cross-compiled for arm64
https://youtu.be/af8lanzkYyQ

https://youtu.be/af8IanzkYyQ

“In reality, with regard to syntax, word-for-word translation
completely rejects the reproduction of meaning and
threatens to lead directly to incomprehensibility.”

Walter Benjamin, “The Task of the Translator,” translated by Steven Rendall, page 161.

| # Sd.Ro B B T v X
. 95| uvarll = 0O;
undefined8 Stack[-0xa0] :8 local_a0 XREF([2] : _ || 56| efiImageHandle = ImageHandle;
. . ' 57, local 8 = (*efiOpenProtocol) (ImageHandle, &efiloadedImageProtocolGuid,efiloadedImageProtocol,
UefiSelfRepMain XREF[1]: FUN_C 58 ImageHandle, (EFI_HANDLE)0x0,1);
po001348 fd 7b b6 a9 stp x29,x30, [sp, #local a0]! 590 if (local 8 == 0) {
0000134c fd 03 00 91 mov x29, sp 600 FUN_0000lelc((undefined *)
00001350 e0 of 00 f9 str ImageHandle, [sp, #local_88] 61 L"EFI BootServices OpenProtocol call with loadedimageprotocol was successful: Sp
00001354 el Ob 00 f9 str gST, [sp, #local 90) !
00001358 e0 Ob 40 9 ldr ImageHandle, [sp, #local_90] 62 ,&local_30,efiloadedImageProtocol,efiImageHandle,uvarll,uvarl2,
0000135c 00 30 40 9 ldr ImageHandle, [ImageHandle, #0x60] 63 (ulonglong)efiOpenProtocol,in_x7);
00001360 e0 4b 00 f9 str ImageHandle, [sp, #qBS] 64 local_18 = *(EFI_HANDLE *)((longlong)local_30 + Ox18);
00001364 20 34 86 52 mov ImageHandle,#0x31al 65/ local_20 = *(UINTN *)((longlong)local_30 + 0x48);
00001368 60 63 ab 72 movk ImageHandle,#0x5b1lb, LSL #16 66 local_58. 0 4 = 0x964e5b22;
0000136¢c 0 63 00 b9 str ImageHandle, [sp, #efilLoadedImageProtocolGuid.D... 67 local_58. 4 2 = 0x6459;
00001370 ab S3 8d 12 mov ImageHandle, #0xfff {8562 68 local 58. 6 2 = 0x11d2;
00001374 e0 cb 00 79 strh ImageHandle, [sp, #efilLoadedImageProtocolGuid.D... 69 local 58[8] = Ox8e;
00001378 40 3a 82 52 mov ImageHandle,#0x11d2 70 local 58[9] = '9';
0000137c e0 cf 00 79 strh ImageHandle, [sp., #efiloadedImageProtocolGuid.D... val uStack 4e = '\0';
00001380 cO fl 87 d2 mov ImageHandle,#0x3f8e 72 uStack_4d = 0xa0;
00001384 00 00 b4 f2 movk ImageHandle,#0xa000, LSL #16 73 uStack_4c. 0 1 = Oxc9;
00001388 20 39 cd f2 movk ImageHandle,#0x69¢9, LSL #32 74 uStack 4c, 11 = 'i';
0000138c 40 6e e7 f2 movk ImageHandle,#0x3b72, LSL #48 - | 75 uStack 4c. 21 = 'r';
00001390 e0 37 00 f9 str ImageHandle, |sp, #eTllLoadedImageFrotocolGuld.D... 76 uStack 4c. 31 = ';';
00001394 e0 4b 40 f9 ldr ImageHandle, [sp, #gBS] 77 efiOpenProtocol = gBS->OpenProtocol;
00001398 06 8c 40 f9 1dr ef10penProtocol, [ImageHandle, #0x118] 78 efiloadedImageProtocol = &local 48;
0000139 el ¢3 01 91 add qST, sp,#0x70 790 uvarl2 = 1:
00001330 e0 83 01 91 add ImageHandle, sp,#0x60 80 uVarll = 0:
000013a4 25 00 80 52 mov w3, #0x1 8l local_8 = (*efiOpenProtocol)(local_18, (EFI_GUID *)local_58,efilLoadedImageProtocol, ImageHandle,
000013a8 04 00 80 d2 mov x4,#0x0) (EFI_HANDLE)0x0,1);
000013ac e3 Of 40 f9 ldr x3, [sp, #local_88] 83 if (local 8 == 0) {
0OOO13b0 e2 03 Ol aa L X2,9ST 84 FUN_00001elc ((undefined *)
000013b4 el O3 00 aa mov gST. ImageHandle 85 L"EFI BootServices OpenProtocol call with simplefilesystemprotocol was successf
000013b8 e0 Of 40 f9 ldr ImageHandle, [sp, #local 88] : %p \n"
000013bc c0O 00 3f d6 blr efiOpenProtocol 86 ,&local_30, efiload{\qImageProtocol, ImageHandle,uvarll,uvarl2,
000013cO 0 4f 00 19 str ImageHandle, [sp, #local_8] = | g7 (ulonglong)efiOpenFPotocol,in x7):
000013c4 0 4f 40 f9 ldr ImageHandle, [sp, #local 8] 88 }
000013c8 1f 00 00 fl cmp ImageHandle,#0x0 pcVar6 = *(code **)((longlong)local_48 + 8);
000013cc 61 16 00 54 b.ne LAB_OOGOIGQB 90 puVarl = &10(:31-60;
000013d0 &0 ¢3 01 91 add ImageHandle, sp,#0x70 91 local 8 = (*pcvar6) (local 48):
000013d4 el 03 00 aa mov gST,ImageHandle 92 if (local 8 == 0) {

“armeé€
RE and xdev

A

I quine

ldr
add
add
mov
mov
ldr
mov
mov
ldr
blr
str
ldr
cmp
b.ne
add
mov
adrp
add
bl
ldr
ldr
str
ldr
ldr
str
mov
movk
str
mov
strh
mov
strh
mov

EFEREL

e, Sp.

9

efi0penProtocol, [ImageHandle, #0x118]

gST,sp,#0x70

ImageHandle,sp,#0x60

wo, #0x1
x4,#0x0

x3, [sp, #local 88]

x2,9ST

gST, ImageHandle

ImageHandle,

[sp, #local 88]

ef10penProtocol

ImageHandle,
ImageHandle,

sp, #local_8]
sp., #local 8]

ImageHandle,#0x0

LAB_ 00001698

ImageHandle,sp,#0x70
gST, ImageHandle
ImageHandle, 0x4000

ImageHandle=>u_EFI BootServices OpenProtocol c...

Print

ImageHandle,
ImageHandle,
ImageHandle,
ImageHandle,
ImageHandle,
ImageHandle,

[sp, #loadedImageProtocol]
[ImageHandle, #0x18]

sp, #local 18]

[sp, #loadedImageProtocol]
[ImageHandle, #0x48]

sp., #local_20]

ImageHandle, #0x5b22

ImageHandle,#0x964e, LSL #16
ImageHandle, [sp, #local 58]

ImageHandle, #0x6459

ImageHandle=>DAT 00006459, [sp, #local 54]
ImageHandle,#0x11d2

ImageHandle, [sp, #local 52]

ImageHandle,#0x398e

Rl N =EH T

B x|

I

arm64 UEFI quine

RE and xdev

2oNFo BB R R0R P 0 nNanElN RS0 IGGELNS

EFI_STATUS local_B8;

gBS = gST->BootServices;

efiloadedImageProtocolGuid.
efiloadedImageProtocolGuid.
efiloadedImageProtocolGuid.
efiloadedImageProtocolGuid.
efilLoadedImageProtocolGuid.
efilLoadedImageProtocolGuid.
efiloadedImageProtocolGuid.
efiloadedImageProtocolGuid.
efilLoadedImageProtocolGuid,
efilLoadedImageProtocolGuid,

efiloadedImageProtocolGuad.

efi0penProtocol = gBS->0OpenProtocol;

efiloadedImageProtocol = &loadedImageProtocol :

uvarl3 = 1;
uvarlz = 0;

Datal = OxSblb3lal;
Data2 = Ox9562;
Data3 = O0x11d2;
Datad[0] = 0Ox8e;
Datad(l] = '?';
Datad[2] = \0'
Datad([3] = 0xa0;
Datad([4] = Oxc9;
Data4[S] = '1';
Datad(6] = 'r';
Datad[7] = ';'

efiImageHandle = ImageHandle;

local 8 = (*efiOpenProtocol) (ImageHandle, &efiloa
ImageHandle, (EFI_HA

if (local 8 == 0) {
Print((undefined *)

L"EFI BootServices OpenProtocol call with loadedimagepro
&loadedImageProtocol,efiloadedImageProtocol,ef1ImageHand

(ulonglong)efiOpenProtocol,1n_x7);

local_18 = loadedImageProtocol->DeviceHandle;

local_20 = loadedImageProtocol->ImageSize;

local S8. 0 4 = 0x964e5b22;
local 58. 4 2 = 0x6459;
local 58. 6 2 = 0x11d2;

10cal_58[8] 0x8e;
local S8[9] = '9';

uStark Ao o '\,

ImageProtocol
E)0x0,1);

UEFI generation 2: arm64

Golfing the solution

1. Use architecture-specific technigues
that leverage armo64 features

* e.g. the ARM barrel shifter can be
leveraged for the painstaking
process of correctly loading a target
128-byte GUID into the correct
register

2. Take the time to figure out the stack

frame layout with all essential data for
UEFI quine

3. Remember that the process for
golfing a binary in one assembly
language (x64) is not a 1:1 mapping of
the golfed binary in a different
assembly language (arm64)

//Stack frame:

/f
[/
//
!/
/7
/7
/7
/f
!/
//
!/
//
/7
/7
!/
[/
//
!/
/7
/7
//
!/
[/
/7
!/
/7
/7
!/
!/

[spl

[sp,
[sp,
[sp,
[sp,
[sp,
[sp,
[sp,
[sp,
[sp,
[sp,
[sp,
[sp,
[sp,
[sp,
[sp,
[sp,
[sp,
[sp,
[sp,
[sp,
[sp,
[sp,
[sp,
[sp,
[sp,
[sp,
[sp,
[sp,

Ax8]

9x10]
Ax18]
0x20]
0x28]
Bx30]
9x38]
Bx40]
Ax44]
Ax46]
Ox48]
Bx50]
Bx54]
Bx56]
Bx58]
Ax60]
Ax68]
0x70]
Ax78]
Px80]
Px88]
x90]
Ax98]
Axald]
Oxa8]
Axb0]
Bxb8]
Bxco]

fp (x29)

Lr (x30)

x1 (gST)

x@ (ImageHandle)
x19

x20

EFI_SIMPLE_FILESYSTEM_PROTOCOL* sfsp
LIP GUID[Q]

LIP_GUID[1]

LIP_GUID[2]

LIP_GUID[3]

SFSP_GUID[@]

SFSP_GUID[1]

SFSP_GUID[2]

SFSP_GUID[3]
EFI_LOADED IMAGE PROTOCOL* lip
UINT64 img_size (= lip->ImageSize)
EFI_HANDLE devicehandle (== lip—>DeviceHandle)
UINTEe4 host_attributes;
EFI_FILE_PROTOCOL* rootVolume
EFI_FILE_PROTOCOL* hostFile

EFI_FILE PROTOCOLx targetFile

UINTN newfile buffersize

gB5

status

VOID * tmp_buffer

Stack frame layout of arm64 solution

322

323 -

= arm64 UEFI quin
» a quine
326

327 i

= X64 solution

330

331

332

333 start:

334 entrypoint:

335 push rbp

336 mov rbp, rsp

337 sub rsp,@xc@

338

339 mov [ImageHandle], rcx

340 mov [gST], rdx

341

342 mov rbx, [gST]

343 mov rbx, [rbx + 0x60]

344 mov [gBS], rbx

345 mov rax, [gST]

346 mov rax, [rax + 0x40]

347 mov [ConOut], rax

348

349 mov rbx, [gBS]

350 mov rdi, [rbx + 0x98] ;gBS—>HandleProtocol()
351 ; params passed in rcx, rdx, r8, r9, rile
352 mov rcx, [ImageHandle

353 ;sthis is how we're passing the GUID so that it works
354 lea r8, [LoadedImageProtocol]

355 mov dword [rbp-0x40], 0x5blb3lal

356 mov word [rbp-0x3c], 0x9562

357 mav word [rbp-@x3a], 0x11d2

358 mav rax, 0x3b7269c9a0003f8e

359 mov [rbp-0x38], rax

360 lea rdx, [rbp-0x40]

361 mov r9, [ImageHandle

362 xor rl@e, rlo

363 call rdi

364 cmp gword [rax], byte 0x@

365 jne printerror

366

367 |

1106

107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151

UefiMain: =
//function prologue arm64 SO'UtIOn
stp x29, x308, [sp, #-0xc@]!
mov x29, sp // Defining local vars+storing them on the stack
stp x19, x20, [sp, #0x20]
str x8, [sp, #0x18] // store imageHandle var on stack
str x1, [sp, #0x10] // store efiSystemTable var on stack
ldr x@8, [sp, #0x10] // load efiSystemTable into x@
ldr x@8, [x9, #0x60] // load xB =SystemTable + @x6@8 = gBS
str x@, [sp, #0xad] // store gBS var on stack
str xzr, [sp, #0x60] // store LoadedImageProtocolx 1lip=NULL on stack
str xzr, [sp, #0x68] // store lip->ImageSize = @ on stack
str xzr, [sp, #0x70] // store lip->DeviceHandle=NULL on stack
str xzr, [sp, #0x80] // store rootvolume=NULL on stack
str xzr, [sp, #0x88] // store hostfile=NULL on stack
str xzr, [sp, #0x90] // store targetfile=NULL on stack
str xzr, [sp, #0xb@] // store tmp_buffer=NULL on stack
//load Loaded Image Protocol guid
mov w@, #0x3lal
movk w8, #Ox5blb, LSL #16
str wa, [sp,#0x40] // store final part of LIP GUID at sp—-@x40
mov w@, #0x9562
strh wd, [sp, #0x44] // store 2nd part of LIP GUID at sp-8x44
mov wl, #0x11d2
strh wa, [sp, #0x46] // store 3rd part of LIP GUID at sp-8x46
mov x@, #0x3f8e
movk x@, #0xad00®, LSL #16
movk x@, #Ox69c9, LSL #32
movk x@, #@x3b72, LSL #48
str x8, [sp, #0x48] // store final part of LIP GUID at sp—0x48
add x8, sp, #0x40 // move address of sp+4@ to x0
mov X1, X0 // address of $sp+@x48 (LIP GUID) into x1
ldr x8, [sp, #0xaf] // load x@ = gBS
ldr x6, [x0, #0x98] // load gBS+0x98 (HandleProtocol) into x6
ldr x3, [sp, #0x18] // load ImageHandle from stack into x3
add x@, sp, #0x60 // move address of $sp+@x68 into x@
mov x2, x©@ // addr of $sp+0x60 (loadedImageProtocolx) into x2
ldr x8, [sp, #0x18] // load ImageHandle from stack into x@
blr x6
cmp x8, 0x@ // check if EFI_STATUS==EFI_SUCCESS (0x8)
b.ne Print

322

323 =

= arm64 UEFI quin
i a quine
326

327 i

= X64 solution

330

331

332

333 start:

334 entrypoint:

335 push rbp

336 mov rbp, rsp

337 sub rsp,@xc@

338

339 mov [ImageHandle], rcx

340 mov [gST], rdx

341

342 mov rbx, [gST]

343 mov rbx, [rbx + 0x60]

344 mov [gBS], rbx

345 mov rax, [gST]

346 mov rax, [rax + 0x40]

347 mov [ConOut], rax

348

349 mov rbx, [gBS]

350 mov rdi, [rbx + 0x95] ; gBS—>HandleProtocol()
351 s params passed in rcx, rdx
352 mov rcx, [ImageHandle]

353 ;sthis is how we're passing the GUID so that it works
354 lea r8, [LoadedImageProtocol]

355 mov dword [rbp-0x40], 0x5blb3lal

356 mov word [rbp-0x3c], 0x9562

357 mav word [rbp-@x3a], 0x11d2

358 mav rax, 0x3b7269c9a0003f8e

359 mov [rbp-0x38], rax

360 lea rdx, [rbp-0x40]

361 mov r9, [ImageHandle]

362 xor rl@e, rlo

363 call rdi

364 cmp gword [rax], byte 0x@

365 jne printerror

366

367 |

rg, r9, rlo

1106

107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151

UefiMain:
//function prologue
stp x29, x308, [sp, #-0xc@]!
mov x29, sp //
stp x19, x20, [sp, #0x20]

str x8, [sp, #0x18] //
str x1, [sp, #0x10] //
ldr x8, [sp, #0x10] //
ldr x8, [xP, #0x60] //
str x8, [sp, #0xad] !/
str xzr, [sp, #0x60] //
str xzr, [sp, #0x68] //
str xzr, [sp, #0x70] //
str xzr, [sp, #0x80] //
str xzr, [sp, #0x88] //
str xzr, [sp, #0x90] //
str xzr, [sp, #0xb@] //

armo64 solution

Defining local vars+storing them on the stack

store imageHandle var on stack

store efiSystemTable var on stack
load efiSystemTable into x@

load xB =SystemTable + @x6@8 = @BS
store gBS var on stack

store LoadedImageProtocolx lip=NULL on stack
store lip—>ImageSize = @ on stack
store lip—>DeviceHandle=NULL on stack
store rootvolume=NULL on stack

store hostfile=NULL on stack

store targetfile=NULL on stack

store tmp_buffer=NULL on stack

//load Loaded Image Protocol guid

mov w@, #0x3lal
movk w8, #O0x5blb, LSL #16
str wd, [sp,#0x40]
mov w@, #0x9562
strh wd, [sp, #0x44] !/
mov w@, #0x11d2

strh wd, [sp, #0x46] //
mov x@, #0x3f8e

movk x@, #0xad00®, LSL #16

movk x@, #Ox69c9, LSL #32

movk x@, #@x3b72, LSL #48

str x8, [sp, #0x48]
add x8, sp, #0x40
mov x1, X0

// store final part of LIP GUID at sp-0x40

store 2nd part of LIP GUID at sp-8x44

store 3rd part of LIP GUID at sp-8x46

// store final part of LIP GUID at sp-0x48
// move address of sp+4@ to x0

// address of $sp+@x48 (LIP GUID) into x1

ldr x8, [sp, #0xad]
ldr x6, [x0, #0x98

add x@, sp, #9x60
mov x2, XxO

ldr x8, [sp, #0x18]
blr x6

cmp x@, 9x@

b.ne Print

// load x@ = gBS
// load gBS+0x98 (HandleProtocol) into x6
sp, #0x1o oac 3
// move address of $sp+@x6@ into x@

// addr of $sp+0x60 (loadedImageProtocolx) into x2

magenandle Trom stack 1into X

// load ImageHandle from stack into x@

// check if EFI_STATUS=EFI_SUCCESS (0x@)

322 1106

323 = 107 UefiMain: =
= arm64 UEFI n 108 //function prologue arm64 solution
325 a qUI e 109 stp x29, x38, [sp, #-0xc@]!

326 110 mov x29, sp // Defining local vars+storing them on the stack
327 _ 111 stp x19, x28, [sp, #0x20]

328 6 | 112

329 x 4 so Utlon 113 str x8, [sp, #0x18] // store imageHandle var on stack

330 114 str x1, [sp, #0x10] // store efiSystemTable var on stack

331 115 ldr x8, [sp, #0x10] // load efiSystemTable into x@

332 116 ldr x8, [xP, #0x60] // load x@ =SystemTable + Ox6@8 = gBS
333 start: 117 str x8, [sp, #0xad] // store gBS var on stack

334 entrypoint: 118 str xzr, [sp, #0x60] // store LoadedImageProtocolx 1lip=NULL on stack
335 push rbp 119 str xzr, [sp, #0x68] // store lip->ImageSize = @ on stack

336 mav rbp, rsp 120 str xzr, [sp, #0x70] // store lip->DeviceHandle=NULL on stack
337 sub rsp,0xch 121 str xzr, [sp, #0x80] // store rootvolume=NULL on stack

338 122 str xzr, [sp, #0x88] // store hostfile=NULL on stack

339 mov [ImageHandle], rcx 123 str xzr, [sp, #0x90] // store targetfile=NULL on stack

340 mov [gST], rdx 124 str xzr, [sp, #0xb@] // store tmp_buffer=NULL on stack

341 125

342 mov rbx, [gST] 126 //load Loaded Image Protocol guid

343 mov rbx, [rbx + 0x60] 127 mov w8, #0x31al

344 mov [gBS], rbx 128 movk wd, #®x5blb, LSL #16

345 mov rax, [gST] 129 str wa, [sp,#0x40] // store final part of LIP GUID at sp—-@x40
346 mov rax, [rax + 0x40] 130 mov w@, #0x9562

347 mov [ConOut], rax 131 strh wd, [sp, #0x44] // store 2nd part of LIP GUID at sp-8x44
348 132 mov wl, #0x11d2

349 mov rbx, [gBS] 133 strh wd, [sp, #0x46] // store 3rd part of LIP GUID at sp-8x46
350 mov rdi, [rbx + 0x98] ; gBS—>HandleProtocol() 134 mov x@, #0x3f8e

351 ; params passed in rcx, rdx, r8, r9, rile 135 movk x@, #0xad00®, LSL #16

352 mov rcx, [ImageHandlel 136 movk x@, #®x69c9, LSL #32

353 Lk o o I KL Yo W V=S =0 - T T Dso that Jt uorl 137 movk x@, #Bx3b72, LSL #48

354 138 str x8, [sp, #0x48] // store final part of LIP GUID at sp-0x48
355 mov dword [rbp-0x40], ©x5blb3lal 139 add x@, sp, #0x40 // move address of sp+4@0 to x@

356 mov word [rbp-0x3c], 0x9562 140 mov X1, X0 // address of $sp+@x48 (LIP GUID) into x1

357 mav word [rbp-@x3a], 0x11d2 141

358 mav rax, @x3b7269c9af@a3f8e 142 ldr x8, [sp, #0xad] // load x@ = gBS

359 mov [rbp-0x38], rax 143 ldr x6, [x0, #0x98] // load gBS+@x98 (HandleProtocol) into x6
360 lea rdx, [rbp-0x40] 144 ldr x3, [sp, #0x18 load ImageHandle from stack into x3

361 mov r9, [ImageHandle] 145 add x@, sp, #0x60 // move address of $sp+@x6@8 into x@

362 xor rle, rieo 146 mov x2, xO // addr of $sp+0x60 (loadedImageProtocolx) into x2
363 call rdi 147

364 cmp gword [rax], byte 0x® 148 ldr x8, [sp, #0x18] // load ImageHandle from stack into x@

365 jne printerror 149 blr x6

366 150 cmp x@, 9x@ // check if EFI_STATUS==EFI_SUCCESS (0x@)
367 | 151 b.ne Print

UEFI generation 2: arm64

RE and development tools

* Write the assembly program and build it with the edk2 build system

* This was easiest option because | wrote this on an arm64 machine (an M1 MacBook Pro) but the bindings for arm64 with
the native Xcode Tools command line tools are for *Darwin* arm64 and for generating Mach-O arm64 binaries

 UEFI apps and drivers are predominately PE files (and occasionally TE) that don’t use the Darwin bindings
 The edk2 build system finally came through and was up to this task of generating arm64 UEFI| apps
 For an assembler with solid UEFI support, there is the ARM-specific flavor of FASM: FASMARM: https://arm.flatassembler.net/

 [Note FASMARM only supports 32-bit and 64-bit ARM architectures up until v8; valid solution for ARM32 builds but not
arm64 builds)

 Hex editor (xxd, hexdump)

* Ghidra with efiSeek and ghidra-firmware-utils

e radare2 for disassembly

« QEMU and gdb for debugging/testing

https://arm.flatassembler.net/
https://github.com/DSecurity/efiSeek
https://github.com/al3xtjames/ghidra-firmware-utils

UEFI Interactive Shell v2.1
EDK II
UEFI v2.60 (EDK II, 0x00010000)
Mapping table
FSO: Alias(s):HD@b:;BLK1:
PciRoot (0x0)/Pci(0x1,0x0)/HD(1,MBR, O9xBE1AFDFA, 0x3F, 0xFBFC1)
BLK3: Alias(s):
VenHw(FOB94AE2-8BA6-409B-9D56-B9B417F53CB3)
BLK2: Alias(s):
VenHw(8047DB4B-7E9C-4COC-8EBC-DFBBAACACESF)
BLKO: Alias(s):
PciRoot(0x0)/Pci(0x1,0x0)
Press ESC in 3 seconds to skip startup.nsh or any other key to continue.
Shell> fs0:
FSO:\>

Final arm64 quine:
Self-replicating UEFI app

Written In arm64 assembl
https://youtu.be/C-jaMoCwdJ

https://youtu.be/C-jaMoCwdJE

/Users/nika/uefi_testing/edk2/MdePkg/Library/Baselib/DivU64x3Z2Remainder.c
1 /** @file
Math worker functions,

Copyright (c) 2006 - 2008, Intel Corporation. All rights reserved.

SPDX-License-Identifier: BSD-2-(Clause-Patent

arm64 UEFI| debugginc

#include "BaselLibInternals.h”

T & gdb
12 Divides a b4-bit unsigned integer by a 32-bit unsigned integer and generates qemu g

13 a 64-bit unsigned result and an optional 32-bit unsigned remainder.

[
S wWwWoo~NhWwU A WwWwnhN

14
<DivU64x32Remainder> stp x29, x30, [sp, 1!
<DivU64x32Remainder+4> MoV x29, sp
<DivU64x32Remainder+8> str x@, [sp,]
<DivU64x3Z2Remainder+l2> str wl, [sp,]
<DivU64x3Z2Remainder+16> str x2, [sp,]
<DivUb4x32Z2Remainder+20> bl <DebugAssertEnabled>
<DivU64x32Remainder+24> and wd, wo,
<DivU64x32Remainder+28> cmp wQ ,
<DivU64x3Z2Remainder+32> b.eq <DivU64x32Remainder+72> // b.none
<DivU64x32Remainder+36> Ldr wd, [sp,]
<DivU64x32Z2Remainder+40> cmp w@,
<DivU64x32Z2Remainder+44> b.ne <Divl64x32Remainder+72>
<DivUB4x3Z2Remainder+48> adrp X9, <CpuBreakpoint+912>
<DivU64x3Z2Remainder+52> add x2, X0,
exec No process In: L?7? PC: 77

(No debugging symbols found in UEFI_bb_disk/UefiQuineAarchbd.efi)
(gdb) info files
Symbols from "/Users/nika/uefi-task-of-the-translator/Aarch64_UEFI_exploits/UEFI_bb_disk/UefiQuineAarché4.efi".
Local exec file:
“/Users/nika/uefi-task-of-the-translator/Aarcho4_UEFI_exploits/UEFI_bb_disk/UefiQuineAarche4.efi’', file type pei-aarch64-little.
Entry point: 0x1000
9x0000000000001000 - Ox00000000000Q5000 1is .text
0x0000000000005000 - Ox00000AVAVAVR6A0A is .data
0x0000000000006000 - OxDOVVVOVCVORA700@ is .reloc
(gdb) add-symbol-file ~/uefi_testing/edk2/Build/BareBonesPkg/DEBUG_GCC/Aarch64/UefiQuineAarche4.debug 0x7875e000 -s .data ©x78762000
add symbol table from file "/Users/nika/uefi_testing/edk2/Build/BareBonesPkg/DEBUG_GCC/Aarch64/UefiQuineAarché4.debug"” at
.text_addr = @x7875e000
.data_addr = @x78762000

(y orn) y
Reading symbols from /Users/nika/uefi_testing/edk2/Build/BareBonesPkg/DEBUG_GCC/Aarche4/UefiQuineAarch6b4.debug...

(gdb) |

UEFI generation 2: arm64
What did you learn at school today?

* | everage the UEFI ecosystem by walking from Protocol interface to Protocol
interface —> better understanding of UEFI internals and base knowledge for
building better exploits

* Building ROP chains for arm64 exploits
* |earning how to set up debugging for arm64 UEFI| apps/drivers
 Knowledge of how to write UEFI| shellcode for arm64

 Expanded repertoire of knowledge and skills for UEFI exploit dev

* Additional working payloads for arm64 UEFI| exploits

UEFI generation 3: EBC

EBC - EFl Byte Code

Why EBC?

« EBC was a natural fit as the final architecture to choose for this project because of
the inherent variability/malleability of natural indexing and the EBC spec itself

 EBC aims to become something of a tower of Babel: a platform-agnostic
architecture specification for PCl option ROM implementation; it uses natural-
indexing to adjust the width of its instructions (32-bit or 64-bit) depending on the

architecture of the host

 EBC is an intermediate language (like LLVM byte code, Java byte code, [insert your
favorite byte code here]) and it is run in the EFI Byte Code Virtual Machine (EBCVM)

* |f a compiler is a translator, then EBC could be considered the holy scripture [per
Benjamin’s metaphor])...

“For to some degree all great writings, but above all holy
scripture, contain their virtual translation between the lines.

The interlinear version of the holy scriptures is the prototype
or ideal of all translation.”

Walter Benjamin, “The Task of the Translator,” translated by Steven Rendall, page 165.

UEFI generation 3: EBC

UEFI EBC architecture details

« EBCVM uses 8 general purposes registers:

* RO-RY

« EBCVM has 2 dedicated registers:
 |P (instruction pointer)
* F (Flags register)

* Natural indexing: uses a natural unit to
calculate offsets of data relative to a base

address, where a natural unit is defined as:

* Natural unit == sizeof (void *)

Table 22.4 Index Encoding

Description
N Sign bit (sign), most significant bit
N-3..N-1 Bits assigned to natural units (w)
A..N-4 Constant units (c)

0..A-1 Natural units (n)

As shown in the Table above for a given encoded index, the most significant bit (bit N) specifies the sign of the resultant offset after it has been
calculated. The sign bit is followed by three bits (N-3..N-1) that are used to compute the width of the natural units field {n). The value (w) from
this field is multiplied by the index size in bytes to determine the actual width (A) of the natural units field (n). Once the width of the natural
units field has been determined, then the natural units (n) and constant units (c) can be extracted. The offset is then calculated at runtime

according to the following equation:

Offset = (¢ + n % (sizeof (VOID *))) = sign

Source: “UEFI Spec, Chapter 22: EFI| Byte Code Virtual Machine,”
https://uefi.org/specs/UEFI/2.10/22 EFI Byte Code Virtual Machine.html#natural-indexing

https://uefi.org/specs/UEFI/2.10/22_EFI_Byte_Code_Virtual_Machine.html#natural-indexing

EBC - EFl Byte Code

If EBC is so great then why haven’t | heard of it?

* Only one compiler specifically designed to target valid EBC Buy Now
binaries: the proprietary Intel C compiler for EBC

The Intel oneAPI Base & loT Toolkit with product support starts at $2,399. (Price may vary by support configuration.)

o ThiS proprietary Intel C Compiler for EBC WaS available fOr the Buy support through a number of resellers or directly from the online store. Special pricing for academic research is available
low price of $995 [to my knowledge, it is no longer available;
now the page on the Intel Products site redirects to an 0T toolkit = [Er—Gre—

for $2399]

 Open-source options are available ... sort of

 fasm-ebc is the closest open-source version to the Intel C
compiler for EBC but it can’t handle edge cases for encoding
instructions with natural-indexing [see this issue in the
archived fasm-ebc GitHub repo:]

* Very few in-the-wild reference EBC images
 EBC is technically “no longer part of the spec”

 Chapter 22 doesn’t exist. Chapter 22 never existed.

EBC - EFl Byte Code

If EBC is a dead ISA with little to no reference implementations why are you talking about it now?

 What if there were legacy/deprecated features lingering in

¢ Files ¥ 4b6ee06 -~
a codebase for years...

edk2 /| MdeModulePkg / Universal { EbcDxe [EbcExecute.c U

 What if IBVs/OEMs were slow to patch platform firmware @))

and remove legacy/deprecated features... e MdeModulePkg: Consume new ali... & lastyear D
 EBC interpreter is still part of the main branch in 5423 lines (4459 loc) - 13@ KB
Tianocore’s edk?
Code | Blame Raw (LJ & 2 ~ [o
* IBVs/OEMs fork edk2, along with the EBC interpreter... o
¥k @Tile
]] 2 Contains code that implements the virtual machine.
» ... then a lot of machines might have the EBC 3
interpreter, and can run EBC binaries 4 Copyright (c) 2@@6.—'2018,‘Intel Corporation. All rights reserver
5 SPDX-License-Identifier: BSD-2-Clause-Patent
b
» Just because this feature is hardly (if ever) used, doesn’t T,
8

mean it can’t be leveraged

#include "EbcInt.h"
#include "EbcExecute.h"
#include "EbcDebuggerHook.h"

-
- ® W

* To be continued... [in VX-Underground Black Mass, vol. 3]

=
N

EBC - EFl Byte Code

The nearly impossible task of writing a UEFI EBC quine

* Frankly, | became obsessed with EBC
* My goals for this project were the following:

* 1. Translate my original self-replicating UEFI app from x64 to EBC and confirm that a
self-replicating EBC UEFI app could run in a standard UEFI environment.

« 2. Leveraging my new knowledge of EBC development, use my self-replicating EBC
app as a template for a new EBC UEFI virus that performs graphics manipulation via
the GOP (Graphics Output Protocol).

* 3. Explore uses of EBC and the EBCVM for novel UEFI malware development --
including but not limited to PCI option ROM attacks, polymorphism, metamorphism
and graphics.

EBC - EFl Byte Code

Translating UEFI quine from x64 to EBC: HandleProtocol()

L

New Handle Protocol:

1——— Built functiion stack frame ——
PUSHN R4 ; Parm#4 = Image Handle
PUSHN RO spush 3rd parameter - protocol pointer
PUSHN R3 spush 2nd param - Pointer to GUID
PUSHN R2 spush 1st param - Image Handle
;——— Read pointer and handler call ——
MOVNW R3,0R1,9, EFI Table ; R3 = SysTable
MOVNW R3,0R3,9,24 ;s R3 = BootServices
CALL32EXA (@R3,16,24 ; Entry #16 = Handle Protocol
1 ——— Remove stack frame ——-
POPN R2 s push 1st param
POPN R3 ; pop 2nd param - pointer to GUID
POPN R3 s pop 3rd param [result] - protocol pointer
POPN R4 ; pop 4th param
;——— Check status and result ——-
MOVSNW R7,R7
CMPI64WUGTE R7,1 s Check status
JMP8CS Bad_Config
CMPI6GAWEQ R3,0 s Check protocol pointer

My implementation of the HandleProtocol() function in EBC UEFI quine

UEFI generation 3: EBC

RE and development tools

* Open-source version of the EBC compiler: fasm-ebc
https://github.com/pbatard/fasmg-ebc

 Hex editor (xxd, hexdump)

* ebcvm: https://github.com/yabits/ebcvm

* Ghidra with efiSeek and ghidra-firmware-utils and an EBC plugin:

o https://qgithub.com/meromwolff/Ghidra-EFI|-Byte-Code-Processor/

https://github.com/pbatard/fasmg-ebc
https://github.com/yabits/ebcvm
https://github.com/DSecurity/efiSeek
https://github.com/al3xtjames/ghidra-firmware-utils
https://github.com/meromwolff/Ghidra-EFI-Byte-Code-Processor/

Applications of
“The Task of the lTranslator” to
UEFI xdev and malware art

What do they say about programming in C code? It's like smoking a cigarette in a swimming pool

full of gasoline. OK, enough of the jokes and back to the blog.

Source: Vincent Zimmer, “EFIl Byte Code,” Saturday, August 1, 2015,
https://vzimmer.blogspot.com/2015/08/efi-byte-code.html

UEFI Exploit dev

Well, how did | get here?

My research on this began after | kept running into the same problem at work: | was *finding*
UEFI vulnerabilities, but | didn’t know how to write exploits for UEFI

 UEFI exploit dev is like many forms of xdev/malware development/RE: an ongoing process

 How did | learn to write UEFI exploits?

* 1. Reverse engineering and replicating the techniques of other PoCs [Translating PoC'’s, if
you will]

e 2. Learning about UEFI by writing UEFI apps and drivers [How do you learn a language?
How do you learn to write UEFI exploits? Exploit dev is like learning a language: it requires

practice and accepting that you’ll fail many times before you communicate what you want
to say

(e.g. pwn a target)]

SMM Callout Exploit dev

Reverse Engineering earlier malware/PoCs

 How does one start writing an exploit for a new system/an unfamiliar target?

* Understand the target:
* Build foundational knowledge (RTFM - the UEFI spec, Beyond BIOS, Rootkits and Bootkits)

* Find previous notable work in UEFI exploit development/malware, and read, re-read the
base text

 “Translate a base text” : Try to translate the same exploit technique on a different
vulnerable target

* e.g. Use crdsh’s SMM callout PoC for a vulnerability in SystemSmmAhciAspiLegacyRt
[“Exploiting SMM callout vulnerabilities in Lenovo firmware”, http://blog.crd.sh/2016/02/
exploiting-smm-callout-vulnerabilities.html |, as a template for writing an SMM callout
exploit for a vulnerabillity in an I[deBusDxe driver

http://blog.cr4.sh/2016/02/exploiting-smm-callout-vulnerabilities.html
http://blog.cr4.sh/2016/02/exploiting-smm-callout-vulnerabilities.html
http://blog.cr4.sh/2016/02/exploiting-smm-callout-vulnerabilities.html
http://blog.cr4.sh/2016/02/exploiting-smm-callout-vulnerabilities.html

UEFI Exploit dev

Reverse Engineering earlier malware/PoCs

* There is no ROP Emporium for UEFI specifically, and there are very few

examples of UEFI-specific CTF challenges [Notable exception: SMM Cowsay
from UIUCTF 2022, which we’ll return to] that you can use for practice

 But there are good resources for learning all of the skills you’ll need to write
UEFI exploits

* No exploit dev roadmap?
Honey, that’s what | call a make-your-own-adventure CTF

UEFI Exploit dev

Make-your-own-adventure CTF

o (OST2) Architecture 4021: Introductory UEFI
https://ost2.fyi/Arch4021

¢ (OST2) Architecture 4001: x86-64 Intel Firmware Attack & Defense
https://ost2.fyi/Arch4001

 (OST2) Hardware 1101: Intel SPI Analysis
https://ost2.fyi/HW1101

 UEFI-Lessons by Kostr: https://github.com/Kostr/UEFI-Lessons/
* Jools

* Chipsec: https://chipsec.qgithub.io/

 UEFITool: https://github.com/LongSoft/UEFITool

https://ost2.fyi/Arch4021
https://ost2.fyi/Arch4001
https://ost2.fyi/HW1101
https://github.com/Kostr/UEFI-Lessons/
https://chipsec.github.io/
https://github.com/LongSoft/UEFITool

UEFI Exploit dev: SMM Callouts

Started from ring -2 now we’re calling out to an attacker-
controlled region of memory

| EFI_STATUS _ fastcall ChildSwSmiHandler(

. EFI_HANDLE DispatchHandle,

3 const void *Context,

L e ot SMM Callout
5 UINTN ‘CongufferSize)

° 1 4

7 EFI_STATUS v5; // rbx 9?7
3 EFI_STATUS v6; // rax

9 UINTN v73; // rbx

1@ EFI_STATUS result; // rax

INTN v9; // rsi

EFI _STATUS v10; // ri2

3 EFI_HANDLE Buffer; // [rsp+306h] [rbp-48h] BYREF

14 UINTN BufferSize; // [rsp+38h] [rbp-38h] BYREF

15 UINTN NoHandles; // [rsp+4@h] [rbp-3@h] BYREF

EFI_LOADED IMAGE PROTOCOL *EfilLoadedImageProtocol; // [rsp+48h] [rbp-28h] BYREF

EFI_ACPI SUPPORT PROTOCOL *EfiAcpiSupportProtocol; // [rsp+56h] [rbp-26h] BYREF

18 void *Table; // [rsp+58h] [rbp-18h] BYREF

19 UINTN Handle[2]; // [rsp+66h] [rbp-18h] BYREF

EFI _ACPI TABLE VERSION Version; // [rsp+A®h] [rbp+3@h] BYREF

22 if (!CommBuffer || !CommBufferSize)
3 return 90i64;

4 if (*(_DWORD *)CommBuffer == 1)
5 {

26 Buffer = 0i64;

27 if (gBS->LocateHandleBuffer(ByProtocol, &EFI_ATA PASS THRU PROTOCOL GUID, @i64, &NoHandles, (EFI_HANDLE **)&Buffer)
8 r

29 v5S = @x800000000000000EUiGS;

3

000013A1 ChildSwSmiHandler:27 (13Al)

UEFI Exploit dev: SMM Callouts

Started from ring -2 now we’re calling out to an attacker-controlled region of memory

* S0... you found an SMM callout vulnerability in a combined SMM/DXE driver. Now what?

 Well... How does an exploit for an SMM callout work?
 What process is it disrupting or manipulating or interfering with?

 What is the starting state of the UEFI firmware’s environment before and after a successful SMM callout
exploit?

* What are the critical data structures to know?
« SMRAM
* EFI Boot Services Table & EFI Runtime Services Table
 EFl System Table
« SMMC

SMM (System Management Mode)

Overview

 The most privileged x86 processor mode — ring -2 [we’re going to ignore ME, but yes
that’s ring -3, good job]

* The processor enters SMM only when a System Management Interrupt (SMI) is
iInvoked

 SMIs have the highest priority of all interrupts — higher priority than NMls (nhon-
maskable interrupts) and Mls (maskable interrupts)

« SMM is meant to act as a privileged and *separate” (read isolated) processor mode for
handling critical system functionality that needs to proceed uninterrupted (i.e. power
management, etc.)

« SMM code and data reside in SMRAM

SMM (System Management Mode) S

SMRAM

« SMM code and data (meaning SMI handler code and
data) is stored in SMRAM

How do we invoke an SMI if SMI
Handler code is in SMRAM and

« SMRAM = a protected region of a processor’s SMRAM is a theoretically protected
address space, dedicated to storing SMM code and region of memory? How can we
data invoke an SMI handler with

necessary arguments if we’re

« SMRAM is locked (or it should be) during Platform outside of SMRAM?

Initialization (PI), so that SMM code and data in

SMRAM are not accessible by code outside of
SMRAM

« SMRAM code should not be reachable by code
running in kernel space or userspace

* Entering SMM is triggered by an SMI, which includes
*saving execution context of code running outside of
SMRAM*

Image credit:
. : : "Through the SMM Class and a Vulnerability Found There." Bruno Pujos,
o After execution of SMI handler code, RSM instruction J January 14, 2020, Syynacﬁv ’
triggers the restoration of the initial saved state https://www.synacktiv.com/en/publications/through-the-smm-class-and-a-

vulnerability-found-there.html

https://www.synacktiv.com/en/publications/through-the-smm-class-and-a-vulnerability-found-there.html
https://www.synacktiv.com/en/publications/through-the-smm-class-and-a-vulnerability-found-there.html

SMM (System Management Mode)

The Communication Buffer SMRAM T Normal DRAM
| L SmmPrivateData
« SMM_Core_Private_Data structure: SmmPrivateData Pointer | SmmiplImageHandie
;Point | SmramRangeCount SmramRanges
* Used as a shared buffer for data during " baar_starr (o) - SmramRanges Ptr
communication between SMRAM/non-SMRAM cmiManage (5 [__SmmEntryPoint
Arbersmu- :‘ 1] 1 R Smm Communicate
. " - o] b . . | mmEntryPoin Buffer
 Easily identifiable by “smmc” signature in T Registered -
memory InNSmm Length
Header Smm Communicate |
. . | Buffer Pointer
 EFI_SMM_Communicate Protocol requires that SmmAllocate/Free T ———

SmminstallProtocol Buffer Size

the Smm Communicate Buffer has the following
structure:

SmmRegister Return Status

Figure 2 - SMM Communication

 GUID of SmiHandler you want to communicate

with
* The size of the data you’re sending to the SMI
handler
Source:
e The data “A Tour Beyond BIOS Secure SMM Communication in the EFI Developer Kit II”

Jiewen Yao, Vincent J. Zimmer, Star Zeng, Intel, April 26, 2016

SMM Callouts

How
Phys Memory

* When code running in SMM (so SMI mf'\:iﬁ!\:m
handler code) reaches out to a data ‘ \

structure/code located outside of 1 MB

SMRAM, an SMM callout vuln can arise Code fetch

in SMM

Legacy BIOS Shadow

 SMRAM == **safe™ (relatively) (; E-s:g::)%%t;)
= UX

- EFI_BOOT_SERVICES and il e

EFI RUNTIME SERVIES == data
structures that are located outside of
SMRAM

e Code in either of these data
structures can be attacker controlled!

Source: “A New Class of Vulnerabilities in SMI Handlers,”
Figure 1 — Schematic overview of an SMM callout, source:

http://www.c7zero.info/stuff/ANewClassOfVulnInSMIHandlers_csw2015.pdf

SMM Callouts

why should | care?

Phys Memory
. SMRAM
* A successful SMM e>§pI0|t could
allow an attacker arbitrary code
. e 1 MB
execution within the most —_—_— Code fetch
privileged execution level (ring e in SMM
_2) Of the O S (FASSENS)

PA = OxFOO00

OF000:08070 = . . navloa
* Ring -2 code execution would 0XF8070 PA

effectively bypass security
protections at all other execution
levels and allow an attacker to
Install a persistent malicious
firmware backdOOr or |mp|ant Source: “A New Class of Vulnerabilities in SMI Handlers,”

Figure 1 — Schematic overview of an SMM callout, source:

http://www.c7zero.info/stuff/ANewClassOfVulnInSMIHandlers_csw2015.pdf

. EFI STATUS fastcall ChildSwSmiHandler(

: EFI_HANDLE DispatchHandle,

const void *Context,

e ~Comaatier SMM Callout
UINTN *ConBufferSize)

i " IdeBusDxe
EFI_STATUS v5; // rbx SwSmi Handler [instance of the IdeBusDxe

EFI STATUS v6; il i
~ v6; // rax executing code in vulnerability reported by Binarly

UINTN v7; // rbx
EFI STATUS result; // rax SMEAM BRLY-2021-020

INTN v9; // rsi CVE-2021-45970]
EFI_STATUS v1@; // ril2

EFI HANDLE Buffer; // [rsp+306h] [rbp-48h] BYREF

UINTN BufferSize; // [rsp+38h] [rbp-38h] BYREF

UINTN NoHandles; // [rsp+48h] [rbp-38h] BYREF

EFI LOADED IMAGE PROTOCOL *EfilLoadedImageProtocol; // [rsp+48h] [rbp-28h] BYREF
EFI ACPI SUPPORT PROTOCOL *EfiAcpiSupportProtocol; // [rsp+56h] [rbp-206h] BYREF

void *Table; // [rsp+58h] [rbp-18h] BYREF Necesgs:nyrggr;c:fi;iro'rlsljlc&r&alIout:
UINTN Handle[2]; // [rsp+66h] [rbp-18h] BYREF CommBufferSize = NULL
EFI_ACPI_TABLE_VERSION Ver‘sion; // [r‘sp+A0h] [rbp+36h] BYREF first DWORD of CommBuffer == 1
if (!CommBuffer || !CommBufferSize)

return 0i64; SwSmi Handler calling out to
if (*(DWORD *)CommBuffer == 1) function in *attacker-controlled*
{ _ EFI_BOOT_SERVICES table

Buffer = 0i64;
if (gBS->LocateHandleBuYfer(ByProtocol, &EFI_ATA PASS THRU PROTOCOL GUID, ©i64, &NoHandles, (EFI_HANDLE **)&Buffer)

{
vS = @x300000000000000EUi6a;

3

C00013Al1 ChildSwSmiHandler:27 (13Al)

https://www.binarly.io/advisories/brly-2021-020
https://nvd.nist.gov/vuln/detail/CVE-2021-45970

J

N B

EFI STATUS _ fastcall ChildSwSmiHandler(
EFI_HANDLE DispatchHandle,

const void *Context,
char *CommBuffer, a O u

UINTN ‘CongufferSize)

.1{ "

M N~ G

NN NN NN
O UM 3

~J

N NNON
0 o

-

EFI STATUS v5; // rbx

EFI_STATUS v6; // rax

UINTN v7; // rbx

EFI_STATUS result; // rax

INTN v9; // rsi

EFI STATUS v1@; // ri2

EFI HANDLE Buffer; // [rsp+36h] [rbp-4@6h] BYREF

UINTN BufferSize; // [rsp+38h] [rbp-38h] BYREF

UINTN NoHandles; // [rsp+4@8h] [rbp-3@h] BYREF

EFI_LOADED IMAGE PROTOCOL *EfiloadedImageProtocol; // [rsp+48h] [rbp-28h] BYREF
EFI_ACPI SUPPORT PROTOCOL *EfiAcpiSupportProtocol; // [rsp+56h] [rbp-28h] BYREF
void *Table; // [rsp+58h] [rbp-18h] BYREF

UINTN Handle[2]; // [rsp+68h] [rbp-18h] BYREF

EFI ACPI TABLE VERSION Versionj; // [rsp+ABh] [rbp+3@6h] BYREF

if (!CommBuffer || !CommBufferSize)
return 90i64;
if (*(_DWORD *)CommBuffer == 1)
{
Buffer = 0i64;
if (gBS->LocateHandleBuffer(ByProtocol, &EFI_ATA PASS THRU PROTOCOL GUID, @i64, &NoHandles, (EFI_HANDLE **)&Buffer)

{
VS = 0x300000000000000EUi6A;

3

000013A1 ChildSwSmiHandler:27 (13Al)

SMM callout exploit dev

Methodology overview, v.1
Adapted from base text: “Exploiting SMM callout vulnerabilities in Lenovo firmware” by cr4sh

Since SMI Handler is making a call *out* of SMRAM to a function in this data structure --
EFI_ BOOT_SERVICES -- and EFI BOOT_SERVICES can be attacker-controlled, an attacker would
need to do the following to exploit this SMM callout and achieve arbitrary code execution in ring -2.

1.
2.
3.
4.

ldentify the location of the EFI_BOOT_SERVICES data structure in memory
Determine the SW SMI which triggers the execution of the callout in vulnerable driver
Allocate space for shellcode in memory + save address of shellcode for use in step 4

Set the address of the LocateHandleBuffer function within the EFI_BOOT_SERVICES table to point
to the address of shellcode (overwrite function pointer of LocateHandleBuffer to redirect code flow)

. Trigger the SW SMI using the identified SW SMI number identified in step 2.

. Attacker shellcode is executed in ring -2

http://blog.cr4.sh/2016/02/exploiting-smm-callout-vulnerabilities.html

SMM Callout exploit v. 1

SMM Callout v.1

« > C

22 github.com/chipsec/chipsec/issues/461

|
C h I psec = O chipsec / chipsec Q. Type (/] to search

<> Code

 Back to the drawing board

() Issues 52 11 Pull requests 6 () Discussions (*) Actions [I] Projects 3 0 wiki) Sec

ARM support? #4671

® Open

Ismaws opened this issue on Oct 20, 2018 - 4 comments

ismaws commented on Oct 20, 2018

This is not an issue, more of a future-release [/ other tools question:

Does chipsec have any plans to support non-intel architectures?
Are there any other tools specific to check secure cfg or AMD/ARM architectures? also, are there other tools that
complement chipsec in its current scope?

®

ErikBjorge commented on Oct 20, 2018 Member

We do have plans for adding the ability to test other architectures to CHIPSEC. Part of this will require restructuring the
driver and configuration file layout and updating the detection process. We also need a simple method for tagging
modules so they run only under the appropriate configurations. | am sure we will find other issues as we start to add
these features.

If you would like we can discuss potential changes in this issue for now. At some point we may need to track
plan/progress on the wiki or some other location.

®

UEFI Exploit dev: SMM Callouts

Started from ring -2 now we’re calling out to an attacker-controlled region of
memory

~*There are no binary exploitation mitigations present in the vulnerable SMM/
DXE driver but Chipsec won’t run on the host machine so now we’re reversing
the swsmi function in Chipsec and replicating its functionality in C *~

SMM callout exploit dev

Methodology overview, v.2

Since SMI Handler is making a call *out™ of SMRAM to a function in this data structure -- EFI_BOOT_SERVICES --
and EFI_BOOT_SERVICES can be attacker-controlled, an attacker would need to do the following to exploit this

SMM callout and achieve arbitrary code execution in ring -2.

1.

AW N

ldentify the location of the EFI_BOOT_SERVICES data structure in memory

. Determine the SW SMI which triggers the execution of the callout in vulnerable driver

Allocate space for shellcode in memory + save address of shellcode for use in step 4

Set the address of the LocateHandleBuffer function within the EFI_BOOT_SERVICES table to point to the
address of shellcode (overwrite function pointer of LocateHandleBuffer to redirect code flow)

Trigger the SW SMI using the identified SW SMI number identified in step 2.
A. Set up communication buffer
B. SmmCommunicatel()
C. Write to I/0 ports Oxb2 and 0Oxb3

Attacker shellcode is executed in ring -2

FSB:> load SmmCal loutDriver.efi

Locate Handle Buffer address: 000000007EEDB116 SMM Ca"OUt V. 2

Locate Handle Buffer offset: 00000000 7EEDD1BS

EFI SYSTEM TABLE pointer address: 7ESBECO1S ChipseC? Never heard Of her‘

EFI BOOT SERVICES TABLE pointer address is: 7EEFo6Fe0
EFI_LOADED_IMAGE_PROTOCOL pointer address is: 7EEDO118

Found Runtime Data address range in memory map: 000000007E4EDDOD - 0OODOODATVESEDOOO of size DOODOOOOOO1OOOOO
Found Runtime Code address range in memory map: 0000000OT7ESEDOOD - BOOBOODOT7EGEDVDGD of size DOBOBVBBOVDBO1BBLOO
potential smmc found at: 7E6CBE146
potential smmc found at: 7E6CB146
Testing smmc_loc value, found at: 7E6CE1460

Vulnerable gBS function pointer LocateHandleBuffer is at: 7EEF7698

Testing ... confirming gBS function pointer LocateHandleBuffer i1s at: 7EEF7098

Vulnerable gBS LocateHandleBuffer function handler is at: 7EED70AF
S1ze of shellcode BEBBABBOBODONAS1
shel lcode address: 7EEDB143
alt shellcode address: 0DBBOOOOOTEEDODESD
SMM BaseZ protocol is located at 7E6CEOES
SMM communication protocol is located at 7E6CB406

UEFI Exploit dev: SMM Callouts

Mitigations: SMM_CODE_CHK_EN

 "Requires building a ROP chain and calculating SMBASE™**

* Run ropper on your target UEFI driver, find some gadgets, build your exploit

OP:

Vi b

* A few resources on bypassing SMM_CODE_CHK_EN with R

* Binarly: “The Dark Side of UEFI: A technical Deep-Dive into Cross-Silicon Exploitation”
https://www.binarly.io/blog/the-dark-side-of-uefi-a-technical-deep-dive-into-cross-silicon-
exploitation

e Syntactiv: “Code Checkmate in SMM” by Bruno Pujos: https://www.synacktiv.com/en/publications/
code-checkmate-in-smm

e cr4sh: “Exploiting AMI Aptio firmware on example of Intel NUC”
http://blog.cr4.sh/2016/10/exploiting-ami-aptio-firmware.html

* Many more examples

https://www.binarly.io/blog/the-dark-side-of-uefi-a-technical-deep-dive-into-cross-silicon-exploitation
https://www.binarly.io/blog/the-dark-side-of-uefi-a-technical-deep-dive-into-cross-silicon-exploitation
https://www.synacktiv.com/en/publications/code-checkmate-in-smm
https://www.synacktiv.com/en/publications/code-checkmate-in-smm
https://www.synacktiv.com/en/publications/code-checkmate-in-smm
https://www.synacktiv.com/en/publications/code-checkmate-in-smm
http://blog.cr4.sh/2016/10/exploiting-ami-aptio-firmware.html

UEFI Exploit dev: GOP Complex

UEFI Exploit dev: GOP Complex (REcon 2024)

Transforming my polymorphic art engine bootkit: from MBR to UEFI

| wanted to explore the UEFI ecosystem and find as many different techniques
as possible that | could leverage to turn the UEFI firmware into a VX factory, into
a constantly evolving warehouse art show.

“I am thinking about something much more important than
bombs. | am thinking about computers.”

—John von Neumann, 1946, [Preface, “Turing’s Cathedral,” George Dyson]

The duality of exploit development: creation + destruction

War machine + creative machine = weird machine
Weird machine: an exploit, an elegant hack

How do you elevate a single exploit and build the complex exploit chain of a
sophisticated PoC/malware?

A1

Sponsored by BigVX

=qe]le]l
development

\\u.u!
v

Artistic/creative
practice

2

The antidote to corporate bureaucracy crushing creativity in xdev, malware dev and vx:
A symbiotic relationship between artistic/creative practice and exploit development
esulting in devastating exploits and incredible artwork that push the boundaries of both fields

=qe]le]l
development

\\u.u!
v

Artistic/creative
practice

GOP Complex: Thesis

Exploit development + art

A match mad; INn VX heaven

e

wﬁﬂ =

==

TEgEET = 2 T
> - S —— =
:&qﬁ, T

e
- l."'.— b ¢ ‘l"_ﬂ BN — S — — i 3 e -rrT
- . - & — — : ; =- ..- o 4,; -ur‘

!l" — 1 - = -_"»..; e _:_:.. s - —_ - - i - F— '.'Y ’.-

B R

-

¥

~

- I"?l‘l‘ —— l-r'_‘-'r"'— =
= i

l. }l"" o— ﬂ.—"
'._A
.

u

---l

TS : : o et e e = =32 — = e ;
= = Em=—— = - G ---E&Eﬁﬂ fwwm

¥ = =
e e N s — o= - x — g
2 e L - e : ; ‘ — = :‘ = L
Fe e g R T B RS

ALT T 7T] E =XF: —————r——r e oy
L- ko - : = ca 8 8 - A -
el @-ﬂ‘f;_._t—_‘f’ie-' %& =553
e }ﬂ',r—:."_ = FC ———— .a. - o
S . = Al %m ~~J.%L¢J 15
= e T 2 : 3 : = =
f‘s?q;r“ S e
r— I'_‘ -

‘o-'a-

R 1 L0 et

§
.

(LT

=

ESSRRELLEH H Tt L 0000 FE Ve | Lo) e
HRRREL L] HPER L0) 0 LS LT | e

HESEH YR 1L T
HSSSFLH R B LI H) T

FESR T TSR L4V o LT 1
e

1 :;””"l .

.
"

1]
HIHH

b
il

) "....l.ii"'!:ll“

T T o S IRt PO |t |4 b L1111 11 | LT
N e R il N S TR L e e T L

UEFI Exploit Dev is amazing and here’s why

| love UEFI it’s my favorite

* Exploit mitigations that are common on modern OSes (i.e. ASLR, DEP, stack canaries,
etc.) aren’t always implemented or implemented fully on UEFI BIOS firmwares

* |If binary exploit mitigations are applied, bypass techniques aren’t unfamiliar (i.e. ROP/
JOP chains for bypassing SMM Code_Check_En)

 UEFI is a complex ecosystem -> error-prone and incomplete coverage of applied
protections

 UEFI is so expansive and unexplored that it offers an environment for creativity in
research and exploit development

 Firmware + hardware + low-level exploit dev + cross-architecture exploits == <3

Conclusion

The art of binary golfing unlocks new techniques in UEFI xdev

 UEFI can be understood as its own ecosystem between the OS and onboard (i.e. SPI
flash chip-resident) firmware. It operates like an intermediary OS in and of itself.
Thus, in order to write effective UEFI-targeting exploits, we have to understand how
to manipulate data structures within UEFI.

My artistic practice and creative projects were "essential® to understanding code
patterns/structs during RE process of vulnerable LogoFAIL driver
SystemlimageDecoder (BRLY-LOGOFAIL-2023-027/CVE-2023-5058) for GOP
Complex (REcon 2024)

* Binary golfing my solutions for the same UEFI quine across 3 different architectures

led to new breakthroughs in my work and the development of novel techniques for
UEFI xdev

“Just as fragments of a vessel, in order to be fitted together, must correspond to
each other In the tiniest details but need not resemble each other, so translation,
instead of making itself resemble the meaning of the original, must lovingly, and in
detail, fashion in its own language a counterpart to the original's mode of
intention, in order to make both of them recognizable as fragments of a vessel, as

fragments of a greater language.”

Walter Benjamin, “The Task of the Translator,” translated by Steven Rendall, page 161.

UEFI Exploitation/Research Resources

“Low Level PC/Server Attack & Defense Timeline,” By @XenoKovah of @DarkMentorLLC
https://darkmentor.com/timeline.html

“Debugging System with DCI and Windbg,” Satoshi Tanda, 29 March 2021,
https://standa-note.blogspot.com/2021/03/debugging-system-with-dci-and-windbg.html

"How Many Million BIOSes would You Like to Infect?" Xeno Kovah & Corey Kallenberg, LegbaCore, http://
legbacore.com/Research files/HowManyMillionBIOSWouldYoulikeTolnfect Full2.pdf

“Leaked Intel Boot Guard keys: What happened? How does it affect the software supply chain?” Binarly Team,
Binarly, 9 November 2022,
https://www.binarly.io/blog/leaked-intel-boot-guard-keys-what-happened-how-does-it-affect-the-software-supply-
chain

“Breaking through another Side: Bypassing Firmware Security Boundaries,” Alex Matrosov, Binarly, 14 July 2021,
https://www.binarly.io/blog/breaking-through-another-sidebypassing-firmware-security-boundaries

https://darkmentor.com/timeline.html
https://standa-note.blogspot.com/2021/03/debugging-system-with-dci-and-windbg.html
http://legbacore.com/Research_files/HowManyMillionBIOSWouldYouLikeToInfect_Full2.pdf
http://legbacore.com/Research_files/HowManyMillionBIOSWouldYouLikeToInfect_Full2.pdf
https://www.binarly.io/blog/leaked-intel-boot-guard-keys-what-happened-how-does-it-affect-the-software-supply-chain
https://www.binarly.io/blog/leaked-intel-boot-guard-keys-what-happened-how-does-it-affect-the-software-supply-chain
https://www.binarly.io/blog/breaking-through-another-sidebypassing-firmware-security-boundaries

UEFI Exploitation/Research Resources

“Now You See It... TOCTOU Attacks Against BootGuard,” Peter Bosch & Trammell Hudson, HackinTheBox Conference 2019,
https://conference.hitb.org/hitbsecconf2019ams/materials/D1T1%20-

%20Toctou%20Attacks % 20Against%20Secure%20Boot%20-%20Trammell % 20Hudson%20&%20Peter%20Bosch.pdf

“Who Watches BIOS Watchers?” Alex Matrosov, Binarly, 12 July 2021,
https://www.binarly.io/blog/who-watches-bios-watchers

“Firmware is the new Black — Analyzing Past 3 years of BIOS/UEFI Security Vulnerabilities” Bruce Monroe & Rodrigo Rubira
Branco & Vincent Zimmer, BlackHat USA 2017,
https://github.com/rrbranco/BlackHat2017/blob/master/BlackHat2017-BlackBIOS-v0.13-Published.pdf

“The Keys to the Kingdom and the Intel Boot Process,” Eclypsium Blog, 28 June 2023, Eclypsium,
https://eclypsium.com/blog/the-keys-to-the-kingdom-and-the-intel-boot-process/

“BootGuard,” Trammell Hudson, 8 November 2020,
https://trmm.net/Bootguard/

https://conference.hitb.org/hitbsecconf2019ams/materials/D1T1%20-%20Toctou%20Attacks%20Against%20Secure%20Boot%20-%20Trammell%20Hudson%20&%20Peter%20Bosch.pdf
https://conference.hitb.org/hitbsecconf2019ams/materials/D1T1%20-%20Toctou%20Attacks%20Against%20Secure%20Boot%20-%20Trammell%20Hudson%20&%20Peter%20Bosch.pdf
https://www.binarly.io/blog/who-watches-bios-watchers
https://github.com/rrbranco/BlackHat2017/blob/master/BlackHat2017-BlackBIOS-v0.13-Published.pdf
https://eclypsium.com/blog/the-keys-to-the-kingdom-and-the-intel-boot-process/
https://trmm.net/Bootguard/

UEFI Exploitation/Research Resources

“Safeguarding rootkits: Intel BIOS Guard,” Alexander Ermolov, Zero Nights,
https://github.com/flothrone/bootguard/blob/master/Intel%20BootGuard % 20final.pdf

“*Securing the Boot Process: The hardware root of trust,” Jessie Frazelle, 2019
https://dl.acm.org/doi/fullHtml|/10.1145/3380774.3382016

“CPUMicrocodes: Intel, AMD, VIA & Freescale CPU Microcode Repositories,” platomav, GitHub
https://github.com/platomav/CPUMicrocodes

“Breaking Firmware Trust from Pre-EFl: Exploiting Early Boot Phases,” Binarly, BlackHat USA 2022,
https://www.youtube.com/watch?v=/81s/Uliwml

https://github.com/flothrone/bootguard/blob/master/Intel%20BootGuard%20final.pdf
https://dl.acm.org/doi/fullHtml/10.1145/3380774.3382016
https://github.com/platomav/CPUMicrocodes
https://www.youtube.com/watch?v=Z81s7UIiwmI

ARM UEFI Exploitation/Research Resources

“Attacking the ARM'’s TrustZone,” Joffrey Gibson, QuarksLab, 31 July 2018,
https://blog.quarkslab.com/attacking-the-arms-trustzone.htmi

“Introduction to Trusted Execution Environment: ARM's TrustZone,” Joffrey Gibson, QuarksLab, 19 June
2018,

https://blog.quarkslab.com/introduction-to-trusted-execution-environment-arms-trustzone.html

“The Dark Side of UEFI: A technical Deep-Dive into Cross-Silicon Exploitation
Binarly efiXplorer Team, Binarly, 8 February 2024,
https://www.binarly.io/blog/the-dark-side-of-uefi-a-technical-deep-dive-into-cross-silicon-exploitation

“Multiple Vulnerabilities in Qualcomm and Lenovo ARM-based Devices,”
Binarly Team, Binarly, 9 January 2023,
https://www.binarly.io/blog/multiple-vulnerabilities-in-qualcomm-and-lenovo-arm-based-devices

https://blog.quarkslab.com/attacking-the-arms-trustzone.html
https://blog.quarkslab.com/introduction-to-trusted-execution-environment-arms-trustzone.html
https://www.binarly.io/blog/the-dark-side-of-uefi-a-technical-deep-dive-into-cross-silicon-exploitation
https://www.binarly.io/blog/multiple-vulnerabilities-in-qualcomm-and-lenovo-arm-based-devices

UEFI Exploitation/Research Resources

"Moving From Common Sense Knowledge about UEFI To Actually Dumping UEFI Firmware," Assaf Carlsbad, Sentinel One,
https://www.sentinelone.com/labs/moving-from-common-sense-knowledge-about-uefi-to-actually-dumping-uefi-firmware/

"Moving From Manual Reverse Engineering of UEFI Modules To Dynamic Emulation of UEFI Firmware," Assaf Carlsbad,

Sentinel One,
https://www.sentinelone.com/labs/moving-from-manual-reverse-engineering-of-uefi-modules-to-dynamic-emulation-of-

uefi-firmware/

"Moving From Dynamic Emulation of UEFI Modules To Coverage-Guided Fuzzing of UEFI Firmware" Assaf Carlsbad,

Sentinel One,
https://www.sentinelone.com/labs/moving-from-dynamic-emulation-of-uefi-modules-to-coverage-guided-fuzzing-of-uefi-

firmware/

"Adventures From UEFI Land: the Hunt For the S3 Boot Script," Assaf Carlsbad, Sentinel One,
https://www.sentinelone.com/labs/adventures-from-uefi-land-the-hunt-for-the-s3-boot-script/

https://www.sentinelone.com/labs/moving-from-common-sense-knowledge-about-uefi-to-actually-dumping-uefi-firmware/
https://www.sentinelone.com/labs/moving-from-manual-reverse-engineering-of-uefi-modules-to-dynamic-emulation-of-uefi-firmware/
https://www.sentinelone.com/labs/moving-from-manual-reverse-engineering-of-uefi-modules-to-dynamic-emulation-of-uefi-firmware/
https://www.sentinelone.com/labs/moving-from-dynamic-emulation-of-uefi-modules-to-coverage-guided-fuzzing-of-uefi-firmware/
https://www.sentinelone.com/labs/moving-from-dynamic-emulation-of-uefi-modules-to-coverage-guided-fuzzing-of-uefi-firmware/
https://www.sentinelone.com/labs/adventures-from-uefi-land-the-hunt-for-the-s3-boot-script/

SMM Callout resources

“Exploiting SMM callout vulnerabilities in Lenovo firmware” by crd4sh

“Building reliable SMM backdoor for UEFI based platforms” by cr4sh,
http://blog.cr4.sh/2015/07/building-reliable-smm-backdoor-for-uefi.html

"Code Check(mate) in SMM." Bruno Pujos, January 14, 2020, Synactiv,
https://www.synacktiv.com/en/publications/code-checkmate-in-smm.html

"Through the SMM Class and a Vulnerability Found There." Bruno Pujos, January 14, 2020, Synactiyv,
https://www.synacktiv.com/en/publications/through-the-smm-class-and-a-vulnerability-found-
there.html

"Another Brick in the Wall: Uncovering SMM Vulnerabilities in HP Firmware," Assaf Carlsbad, Sentinel
One,
https://www.sentinelone.com/labs/another-brick-in-the-wall-uncovering-smm-vulnerabilities-in-hp-
firmware/

http://blog.cr4.sh/2016/02/exploiting-smm-callout-vulnerabilities.html
http://blog.cr4.sh/2015/07/building-reliable-smm-backdoor-for-uefi.html
https://www.synacktiv.com/en/publications/code-checkmate-in-smm.html
https://www.synacktiv.com/en/publications/through-the-smm-class-and-a-vulnerability-found-there.html
https://www.synacktiv.com/en/publications/through-the-smm-class-and-a-vulnerability-found-there.html
https://www.sentinelone.com/labs/another-brick-in-the-wall-uncovering-smm-vulnerabilities-in-hp-firmware/
https://www.sentinelone.com/labs/another-brick-in-the-wall-uncovering-smm-vulnerabilities-in-hp-firmware/
https://www.sentinelone.com/labs/another-brick-in-the-wall-uncovering-smm-vulnerabilities-in-hp-firmware/

SMM Callout resources

“SmmExploit,” tandasat, GitHub,
https://github.com/tandasat/SmmExploit

“SmmExploit - FindSystemManagementServiceTable” tandasat, GitHub,
https://github.com/tandasat/SmmExploit/blob/main/Demo/Demo/FindSystemManagementServiceTable.cpp

“*PiSmmCore: SMM Core global variable for SMM System Table (SMST) Only accessed as a physical structure in
SMRAM,” tianocore, edk2, GitHub,
https://github.com/tianocore/edk2/blob/stable/202011/MdeModulePkg/Core/PiSmmCore/PiSmmCore.c#L.19

“MdeModulePkg: PiSmmipl,” tianocore, edk2, GitHub,
https://github.com/tianocore/edk2/blob/stable/202011/MdeModulePkg/Core/PiSmmCore/PiSmmipl.c

“Platform Runtime Mechanism,” version 1.0, UEFI, November 2020,
https://uefi.org/sites/default/files/resources/Platform%20Runtime%20Mechanism%20-%20with%20legal % 20notice.pdf

“Platform Runtime Mechanism,” tianocore, edk2-staging repository, GitHub,
https://qithub.com/tianocore/edk2-staging/tree/PlatformRuntimeMechanism

https://github.com/tandasat/SmmExploit
https://github.com/tandasat/SmmExploit/blob/main/Demo/Demo/FindSystemManagementServiceTable.cpp
https://github.com/tianocore/edk2/blob/stable/202011/MdeModulePkg/Core/PiSmmCore/PiSmmCore.c#L19
https://github.com/tianocore/edk2/blob/stable/202011/MdeModulePkg/Core/PiSmmCore/PiSmmIpl.c
https://uefi.org/sites/default/files/resources/Platform%20Runtime%20Mechanism%20-%20with%20legal%20notice.pdf
https://github.com/tianocore/edk2-staging/tree/PlatformRuntimeMechanism

SMM Callout resources

"Advanced x86: BIOS and System Management Mode Internals, Day 7, System Management Mode (SMM)," Xeno Kovah & Corey
Kallenberg, LegbaCore,

https://opensecuritytraining.info/IntroBIOS files/Day1 07 Advanced%20x86%20-%20BI0S%20and%20SMM %20Internals%20-
%20SMM.pdf

"Advanced x86: BIOS and System Management Mode Internals , Day 8, SMRAM (System Management RAM)," Xeno Kovah & Corey Kallenberg,
LegbaCore,

https://opensecuritytraining.info/IntroBIOS files/Day1 08 Advanced%20x86%20-%20BIOS%20and%20SMM %20Internals%20-
%20SMRAM.pdf

"Advanced x86: BIOS and System Management Mode Internals , Day 8, SMRAM (System Management RAM)," Xeno Kovah & Corey Kallenberg,
LegbaCore,

https://opensecuritytraining.info/IntroBIOS files/Day1 09 Advanced%20x86%20-%20BIOS%20and%20SMM %20Internals%20-
%20SMM%20and%20Caching.pdf

"Advanced x86: BIOS and System Management Mode Internals, Day 10, More Fun with SMM," Xeno Kovah & Corey Kallenberg, LegbaCore,
https://opensecuritytraining.info/IntroBIOS files/Day1l 10 Advanced%20x86%20-%20BI0S%20and%20SMM%20Internals%20-
%200ther%20Fun%20with%20SMM.pdf

"Advanced x86: BIOS and System Management Mode Internals, Day 11, SMM Conclusion," Xeno Kovah & Corey Kallenberg, LegbaCore,
https://opensecuritytraining.info/IntroBIOS files/Day1 11 Advanced%20x86%20-%20BIOS%20and%20SMM %20Internals%20-
%20SMM%20Conclusion.pdf

https://opensecuritytraining.info/IntroBIOS_files/Day1_07_Advanced%20x86%20-%20BIOS%20and%20SMM%20Internals%20-%20SMM.pdf
https://opensecuritytraining.info/IntroBIOS_files/Day1_07_Advanced%20x86%20-%20BIOS%20and%20SMM%20Internals%20-%20SMM.pdf
https://opensecuritytraining.info/IntroBIOS_files/Day1_08_Advanced%20x86%20-%20BIOS%20and%20SMM%20Internals%20-%20SMRAM.pdf
https://opensecuritytraining.info/IntroBIOS_files/Day1_08_Advanced%20x86%20-%20BIOS%20and%20SMM%20Internals%20-%20SMRAM.pdf
https://opensecuritytraining.info/IntroBIOS_files/Day1_09_Advanced%20x86%20-%20BIOS%20and%20SMM%20Internals%20-%20SMM%20and%20Caching.pdf
https://opensecuritytraining.info/IntroBIOS_files/Day1_09_Advanced%20x86%20-%20BIOS%20and%20SMM%20Internals%20-%20SMM%20and%20Caching.pdf
https://opensecuritytraining.info/IntroBIOS_files/Day1_10_Advanced%20x86%20-%20BIOS%20and%20SMM%20Internals%20-%20Other%20Fun%20with%20SMM.pdf
https://opensecuritytraining.info/IntroBIOS_files/Day1_10_Advanced%20x86%20-%20BIOS%20and%20SMM%20Internals%20-%20Other%20Fun%20with%20SMM.pdf
https://opensecuritytraining.info/IntroBIOS_files/Day1_11_Advanced%20x86%20-%20BIOS%20and%20SMM%20Internals%20-%20SMM%20Conclusion.pdf
https://opensecuritytraining.info/IntroBIOS_files/Day1_11_Advanced%20x86%20-%20BIOS%20and%20SMM%20Internals%20-%20SMM%20Conclusion.pdf

ARMG64 UEFI Resources

“Arm SystemReady and the UEFI Firmware Ecosystem,” Dong Wei (Arm) Samer El-Haj-Mahmoud (Arm), UEFI 2021 Virtual Plugfest, January 26, 2021

“Arm SystemReady Compliance Program,” ARM,

https://www.arm.com/architecture/system-architectures/systemready-certification-program

“ARM Developer docs: UEFI,” ARM Developer,

https://developer.arm.com/Architectures/Unified % 20Extensible % 20Firmware % 20Interface

“ARM Management Mode Interface Specification System Software on ARM,” ARM Developer,

https://developer.arm.com/documentation/den0060/a/?lang=en

“Base Boot Security Requirements 1.3,” ARM Developer,

https://developer.arm.com/documentation/den0107/latest

“Porting a PCI driver to ARM AArch64 platforms”, Olivier Martin (ARM), UEFI Spring Plugfest — May 18-22, 2015,
https://uefi.org/sites/default/files/resources/UEFI Plugfest May 2015 ARM.pdf

“Tailoring TrustZone as SMM Equivalent,” Tony C.S. Lo Senior Manager American Megatrends Inc., UEFI Plugfest March 2018,

https://uefi.org/sites/default/files/resources/UEFI Plugfest March 2016 AMI.pdf

https://www.arm.com/architecture/system-architectures/systemready-certification-program
https://developer.arm.com/Architectures/Unified%20Extensible%20Firmware%20Interface
https://developer.arm.com/documentation/den0060/a/?lang=en
https://developer.arm.com/documentation/den0107/latest
https://uefi.org/sites/default/files/resources/UEFI_Plugfest_May_2015_ARM.pdf
https://uefi.org/sites/default/files/resources/UEFI_Plugfest_March_2016_AMI.pdf

EBC Resources

Writing and Debugging Writing and Debugging EBC Drivers EBC Drivers February 27 February 27th 2007,
https://uefi.org/sites/default/files/resources/EBC Driver Presentation.pdf

“EFI Byte Code,” Vincent Zimmer, 1 August 2015,
https://vzimmer.blogspot.com/2015/08/efi-byte-code.html

“Fasmg-ebc,” pbatard, GitHub,
https://qgithub.com/pbatard/fasmg-ebc/

“Ebcvm,” yabits, Github,
https://github.com/yabits/ebcvm/

“Ghidra-EFI-Byte-Code-Processor,” meromwolff, GitHub,
https://github.com/meromwolff/Ghidra-EFI-Byte-Code-Processor/

“EBC Compiler,” Ravi Narayanaswamy and Jiang Ning Liu, Intel, 2007,
https://uefi.org/sites/default/files/resources/EBC Compiler Presentation.pdf

https://uefi.org/sites/default/files/resources/EBC_Driver_Presentation.pdf
https://vzimmer.blogspot.com/2015/08/efi-byte-code.html
https://github.com/pbatard/fasmg-ebc/
https://github.com/yabits/ebcvm/
https://github.com/meromwolff/Ghidra-EFI-Byte-Code-Processor/
https://uefi.org/sites/default/files/resources/EBC_Compiler_Presentation.pdf

