
Nika Korchok Wakulich (ic3qu33n)
Dartmouth CS59, Guest Lecture, Fall 2024

Reflections on UEFI and
The Task of the
Translator
The art of binary golf - elegant assembly language programming,
malware art, and using cross-architecture UEFI quines as a framework
for UEFI exploit development

DISCLAIMER:
The views expressed in this presentation are my own and
do not reflect the opinions of my past, present or future
employers

Viewer Discretion is advised.

whoami
Twitter: @nikaroxanne
Mastodon: ic3qu33n@infosec.exchange
Website: https://ic3qu33n.fyi/
GitHub: @ic3qu33n and @nikaroxanne
bsky: @ic3qu33n

Security Consultant at Leviathan Security Group
Reverse engineer + artist + hacker
I <3 UEFI, hardware hacking, binary golf, binary exploitation,
skateboarding,  
learning languages, making art, writing programs in assembly languages,
etc.

greetz 2 the following for their support w this talk:
0day (@0day_simpson), netspooky (@netspooky), dnz (@dnoiz1), zeta
Xeno Kovah (@xenokovah), Alex Matrosov (@matrosov), Emily 
The team at Leviathan 
Sergey Bratus and Dartmouth

https://ic3qu33n.fyi/projects/mySuperSweet16BitMalwareMSDOSEdition

Prior work: malware art

“Michelangelo REanimator,” MBR Bootkit
REcon 2023:

generation 1-1337
michelangelo reanimator

GOP Complex - REcon 2024

GOP Complex - REcon 2024

Format of this Talk
This is a talk about translation, the art of binary golf and UEFI malware art

1. Assembly language programming across architectures

2. The art of binary golfing

3. Applications of “The Task of the Translator” to UEFI/Low-level firmware
exploitation, xdev and malware art

Format of this Talk
This is a talk about translation, the art of binary golf and UEFI malware art

Part 1: Assembly language programming across architectures

UEFI Quines (self-replicating UEFI apps) in three architectures:

x86-64, arm64, EBC

Part 2: The art of binary golfing

Part 3: Applications of “The Task of the Translator” to UEFI/Low-level firmware exploitation

Case study: the evolution of an SMM exploit

From simple Chipsec PoC to standalone malicious driver [brief overview]

Definitions
Notes on terminology [This is a talk about translation after all]

• Binary golf: the art of writing the smallest program that performs a
specific task

• e.g. A self-replicating program (quine), famously featured in the
paper “Reflections on Trusting Trust” by Ken Thompson

• Quine: a self-replicating program

• Formally “a program whose output is a copy of its own source code”

• Binary Golf Grand Prix: an annual competition focused on the art of
binary golfing, challenge specs/target/theme changes annually

• PoC: Proof of Concept

• Exploit: a program/PoC that successfully leverages a vulnerability in a
piece of software/hardware/system/etc. to cause a desired outcome

• Exploit development (aka “xdev”): the process of writing a working PoC
for a vulnerability

“Binary Golf Grand Prix,” https://binary.golf/  
netspooky

https://binary.golf/

Housekeeping
Notes on terminology [This is a talk about translation after all]

“EBC isn’t an “architecture,” it’s a platform agnostic
intermediary language that leverages natural-indexing to
automatically adjust its instruction width to either 32-bit or
64-bit dependent on the architecture of the host machine. It
uses a VM! That sounds like ring -1 to me!”

I know. But referring to it as an architecture at this point in
the talk is sufficient for our understanding of EBC in relation
to the narrative. And it’s more succinct. We’ll get to EBC
and the spec. Hang tight.

Wait… is the architecture arm64? Or aarch64? Or is it
AArch64? Aarch64? ARM64? Arm64? Which is it?
Team Edward or Team Jacob??

arm64 is the term I will use in this presentation to refer to
the assembly language of the Armv8 64-bit architecture,
known as ARM64/AArch64

Team
arm64

What is “The Task of the Translator”

An essay by Walter Benjamin

• Walter Benjamin was a philosopher, cultural
critic, essayist

• Other famous works by Benjamin:  
“The Work of Art in the Age of Mechanical
Reproduction” 
The Arcades Project

• His essay “The Task of the Translator” was a
seminal work in translation theory

• For this presentation, I’ll be referring to Steven
Rendall’s English translation of Benjamin’s essay: 
https://german.yale.edu/sites/default/files/
benjamin_translators_task.pdf

Walter Benjamin (1892–1940) ~1930 © Charlotte Joel

https://german.yale.edu/sites/default/files/benjamin_translators_task.pdf
https://german.yale.edu/sites/default/files/benjamin_translators_task.pdf

What is “The Task of the Translator” in UEFI?
A framing device for understanding how to write cross-architecture exploits
Combine the work of four separate projects using the framework of Walter Benjamin’s
“Task of the Translator”

4. VX-Underground Black Mass article —>
EBC

3. OST2 ARM Assembly class —>
UEFI exploit dev on arm64

1. UEFI Exploit Research and
Development at Leviathan —>  
SMM exploits

2. BGGP4 and UEFI binary golfing —>  
UEFI quines

How do we apply “The Task of the Translator” to UEFI?

Apply “the Task of the Translator” to two tasks:

1. Translating my winning BGGP4 UEFI quine from x86-64 asm to two other
architectures: arm64 and EBC

2. Developing one exploit for an SMM callout vulnerability, then creating new
generations of that exploit, altering the technique used, the language the exploit is
written, the architecture it targets, etc.

One goal of optimization is to eliminate redundancy. Are we creating redundancy?

No, this isn’t redundant work.

I’m not creating *copies* of the original UEFI app (the UEFI app already creates copies
of itself)

Walter Benjamin, “The Task of the Translator,” translated by Steven Rendall, page 152.

“Translation is a mode. In order to grasp it as such, we have
to go back to the original.”

Notable examples to set the precedent

Developing a “next generation” for a piece of art:

• cr4sh - SmmBackdoorNg (Smm Backdoor Next Generation):  
https://github.com/Cr4sh/SmmBackdoorNg

• See cr4sh’s earlier project SmmBackdoor:  
https://github.com/Cr4sh/SmmBackdoor

• Star Trek [with the notable exception of Leonard Nimoy, Leonard Nimoy is
eternal]

How do we apply “The Task of the Translator” to UEFI?

https://github.com/Cr4sh/SmmBackdoorNg
https://github.com/Cr4sh/SmmBackdoor

Research questions

• How can we use binary golfing to further develop a work of art, an exploit?

• How does one UEFI exploit differ when it is translated across multiple

different architectures?

• How does my artistic practice and creative projects with UEFI graphics

programming inform and enhance my work in UEFI RE and exploit
development?

• What can architecture-specific requirements for an exploit teach us about
how to approach finding vulnerabilities and writing new gnarly exploits?

• How many different ways can we write an exploit for a specific vulnerability?

• What is the task of the translator?

What is “The Task of the Translator” in UEFI xdev?

The art of binary golf

Binary golfing as an art form
Mini-golf v2.0

I love writing programs in assembly languages

Binary golfing pushes this further and asks the question: how small can you make your
code?

What is the most elegant solution to a problem?

Binary golfing is a demanding art form, but when an artist/hacker is determined to create
something, they will find creative ways to bypass restrictions, and work with (rather than
against) extreme constraints

The result of this process often leads to innovation and great art

Binary golfing as an art form
Techniques

• File format tricks - manipulation of headers, use of “dead code” regions as location for
holding

• Assembly language programming tricks — variations in opcodes to fit constraints

• e.g. polymorphic printable ASCII shellcode

• Compilation tricks: self-compilation, linking against stripped executables etc.

• Variations in playing with syscalls for Linux binaries

• Application of sound, graphics programming techniques in new+strange+fun ways

• Many more!

Binary golfing as an art form
Resources

Netspooky’s series on ELF binary mangling

Part 1: https://n0.lol/ebm/1/

Part 2: https://n0.lol/ebm/2/

Part 3: https://n0.lol/ebm/3/

Part 4: https://tmpout.sh/2/11.html

LibGolf by xcellerator: https://tmpout.sh/1/1.html

Netspooky’s series on PE binary mangling:

Golf Club, netspooky: https://github.com/netspooky/golfclub

Size coding: http://www.sizecoding.org/wiki/Linux

https://n0.lol/ebm/1/
https://n0.lol/ebm/2/
https://n0.lol/ebm/3/
https://tmpout.sh/2/11.html
https://tmpout.sh/1/1.html
https://github.com/netspooky/golfclub
http://www.sizecoding.org/wiki/Linux

Binary golfing as an art form

Check out these amazing resources by my
friends!

netspooky’s series on ELF binary mangling

LibGolf by xcellerator

UEFI Binary Golfing
tips + tricks

• The offsets of data structures in UEFI are consistent, so if we know which data structure + protocol we want to
target, we can write a test program to find those offsets, then define them with macros in our final exploit

• e.g. BootServices-> HandleProtocol is at offset 0x98 in the EFI_BOOT_SERVICES table

• We will have easy access to data structures right away:

• e.g. on x64, EFI_SYSTEM_TABLE * is in RDX and EFI_IMAGE_HANDLE is in RCX upon program invocation

• We can also target other data structures/protocols (i.e. EFI_FILE_PROTOCOL for file operations,
EFI_SIMPLE_FILESYSTEM_PROTOCOL for filesystem operations, etc.) to hook/inject our payload

• In-depth knowledge of relevant file formats for UEFI binary executables (mainly PE, occasionally TE) can be
used to shrink code size and minimize reliance on external libraries

• In-depth knowledge of PE format essential for determining how to patch UEFI binaries into valid EBC UEFI
apps/drivers

A brief introduction to UEFI

Introduction to UEFI
In the beginning there was legacy BIOS

BIOS: Basic Input-Output System

• BIOS is platform firmware responsible for configuring hardware and preparing a
system before loading an operating system

• tl;dr BIOS is the software responsible for properly setting up your computer when it
turns on

Legacy BIOS: The non-stardardized standard for BIOS implementations prior to the
mainstream adoption of UEFI

Introduction to UEFI
In the beginning there was legacy BIOS

And now we have UEFI and everything is fine! And there are no more vulnerabilities and
Secure Boot wasn’t just a marketing strategy for a feature that was never intended as a
security feature of UEFI in the first place!

Source: “BIOS Disassembly Ninjutsu Uncovered: Listing 5.27 AMI BIOS Boot Block Jump Table,” 1st
edition, Darmawan Salihun (pinczakko), page 60, https://github.com/pinczakko/BIOS-Disassembly-

Ninjutsu-Uncovered

https://github.com/pinczakko/BIOS-Disassembly-Ninjutsu-Uncovered
https://github.com/pinczakko/BIOS-Disassembly-Ninjutsu-Uncovered

Introduction to UEFI
In the beginning there was legacy BIOS

And now we have UEFI and everything is fine! And there are no more vulnerabilities and
Secure Boot wasn’t just a marketing strategy for a feature that was never intended as a
security feature of UEFI in the first place!

Oh… wait, never mind.

https://darkmentor.com/timeline.html

Source:

“Trusted Platforms UEFI, PI and TCG-based firmware,” Vincent J. Zimmer (Intel Corporation), Shiva R. Dasari Sean P. Brogan (IBM), White

Paper by Intel Corporation and IBM Corporation, September 2009

https://www.intel.com/content/dam/doc/white-paper/uefi-pi-tcg-firmware-white-paper.pdf

https://www.intel.com/content/dam/doc/white-paper/uefi-pi-tcg-firmware-white-paper.pdf

Legacy BIOS Reverse Engineering

• BIOS code was written in 16-bit
assembly and it ran in real mode

• Legacy BIOSes were non-
standardized, IBV specific
implementations

• Legacy BIOS was responsible for
important functionality—
initialization of platform hardware in
preparation for loading an OS —
but it was limited in scope and size

• Refer to “BIOS Disassembly
Ninjutsu Uncovered” by Darmawan
Salihun (pinczakko) for the holy
scripture of Legacy BIOS RE + xdev

Source: “BIOS Disassembly Ninjutsu Uncovered: 5.2.3.2. Decompression Block Relocation,” 1st edition,
Darmawan Salihun (pinczakko), page 62, https://github.com/pinczakko/BIOS-Disassembly-Ninjutsu-

Uncovered/blob/master/BIOS_Disassembly_Ninjutsu_Uncovered.pdf

Introduction to UEFI

https://github.com/pinczakko/BIOS-Disassembly-Ninjutsu-Uncovered
https://github.com/pinczakko/BIOS-Disassembly-Ninjutsu-Uncovered
https://github.com/pinczakko/BIOS-Disassembly-Ninjutsu-Uncovered
https://github.com/pinczakko/BIOS-Disassembly-Ninjutsu-Uncovered/blob/master/BIOS_Disassembly_Ninjutsu_Uncovered.pdf
https://github.com/pinczakko/BIOS-Disassembly-Ninjutsu-Uncovered/blob/master/BIOS_Disassembly_Ninjutsu_Uncovered.pdf
https://github.com/pinczakko/BIOS-Disassembly-Ninjutsu-Uncovered/blob/master/BIOS_Disassembly_Ninjutsu_Uncovered.pdf

RE advantages of UEFI over Legacy BIOS

• Rich ecosystem of built-in functionality

• UEFI follows implementation standards with detailed and
comprehensive spec [obvious caveats, it’s not perfect but wow
look at those diagrams. AMI never gave me a diagram </3]

• source code primarily written in C following a standardized
specification —> easier to debug / disassemble

• A selection of great plugins and tools for UEFI RE + xdev:

• UEFITool: https://github.com/LongSoft/UEFITool

• efiXplorer: https://github.com/binarly-io/efiXplorer

• Ghidra plugins:

• efiSeek: https://github.com/DSecurity/efiSeek

• ghidra-firmware-utils: https://github.com/al3xtjames/
ghidra-firmware-utils

• UEFI has expansive breadth + depth —> greater attack
surface

Source: “UEFI Specification, Fig.7.2 Handle Database”

https://uefi.org/specs/UEFI/2.10/07_Services_Boot_Services.html#device-handle-to-protocol-handler-

mapping

Introduction to UEFI

https://github.com/LongSoft/UEFITool
https://github.com/LongSoft/UEFITool
https://github.com/binarly-io/efiXplorer
https://github.com/binarly-io/efiXplorer
https://github.com/DSecurity/efiSeek
https://github.com/DSecurity/efiSeek
https://github.com/al3xtjames/ghidra-firmware-utils
https://github.com/al3xtjames/ghidra-firmware-utils
https://github.com/al3xtjames/ghidra-firmware-utils
https://github.com/al3xtjames/ghidra-firmware-utils
https://github.com/al3xtjames/ghidra-firmware-utils
https://uefi.org/specs/UEFI/2.10/07_Services_Boot_Services.html#device-handle-to-protocol-handler-mapping
https://uefi.org/specs/UEFI/2.10/07_Services_Boot_Services.html#device-handle-to-protocol-handler-mapping

UEFI apps/drivers + UEFI shell

• UEFI Shell: A UEFI application that
provides a shell interfacing for
interacting with various UEFI
components (i.e. other UEFI apps and
drivers, and the protocols therein)

• UEFI apps and drivers are PE/COFF
executables (occasionally TE) and
have a PE/COFF header

• The only difference between an UEFI
app and a UEFI driver is that an app is
unloaded from memory after it is run
and a driver remains resident until it is
unloaded Source: “Harnessing the UEFI Shell: Moving the Platform Beyond DOS, 2nd edition,”

Vincent Zimmer, Michael Rothman and Tim Lewis

Introduction to UEFI

Protocols

• Protocols are the keys to the
empire

• UEFI is the empire

• A protocol is an interface that
encapsulates data and
function pointers

• Provide abstractions for
hardware/firmware/OS
communications

• A driver can produce one or
more protocols

Source: “UEFI Specification: Fig. 2.4 Construction of a Protocol”

https://uefi.org/specs/UEFI/2.10/02_Overview.html#construction-of-a-protocol

Introduction to UEFI

https://uefi.org/specs/UEFI/2.10/02_Overview.html#construction-of-a-protocol

Protocols Example: LoadedImageProtocol

LoadedImageProtocol

Introduction to UEFI

Walter Benjamin, “The Task of the Translator,” translated by Steven Rendall, page 162.

“True translation is transparent, it does not obscure the
original, does not stand in its light, but rather allows pure
language, as if strengthened by its own medium, to shine
even more fully on the original.”

UEFI generation 1: x86-64

UEFI generation 1: x86-64
The Specs

My winning entry in the UEFI app
category of Binary Golf Grand Prix 4

• BGGP: “The goal of the Binary
Golf Grand Prix is to challenge
programmers to make the
smallest possible binary that fits
within certain constraints.”
[Source “Binary Golf Grand Prix”,
netspooky, https://n0.lol/bggp/]

Source: “Binary Golf Grand Prix 4,” Binary Golf Association, https://binary.golf/

https://n0.lol/bggp/%5D

UEFI generation 1: x86-64
Methodology

1. Write a valid working solution (a self-replicating UEFI app) in C

2. Use the C solution as a base text and translate the quine from C to assembly —> Reverse
engineer the C solution

3. Golf the assembly solution and shrink the size of the binary as much as possible

4. Reverse engineer, rewrite and refactor the assembly

Size of C quine: ~17,000 bytes

Final size of x86_64 asm UEFI quine: 1480 bytes

[Side note: shoutout to my friend @netspooky who I worked with on this project for teaching me PE
binary mangling. Check out his fantastic write-up on his recent solution that set the new record to
420 bytes: https://github.com/netspooky/golfclub/tree/master/uefi/bggp4]

https://github.com/netspooky/golfclub/tree/master/uefi/bggp4

UEFI generation 1: x86-64
RE and development tools

• nasm

• Hex editor (xxd, hexdump)

• Ghidra, specifically using these two plugins for UEFI:

• efiSeek: https://github.com/DSecurity/efiSeek

• ghidra-firmware-utils: https://github.com/al3xtjames/ghidra-firmware-utils

• Radare2 for a faster option, better for disassembling and other reversing tasks near the
end of the project that involved nitty gritty changes to the assembly

• QEMU and gdb for debugging/testing

• I didn’t use IDA Pro for this project, it’s a better tool for other projects

https://github.com/DSecurity/efiSeek
https://github.com/al3xtjames/ghidra-firmware-utils

rcx - EFI_HANDLE

rdx - EFI_SYSTEM_TABLE*

rsp - <return address>

Source: UEFI Specification -
2.3.4.1. Handoff State

UEFI generation 1: x86-64
UEFI x64 - Handoff state upon program invocation

Program entry point - setting up stack frame, saving gST, ImageHandle

Use gST to save gBS and ConOut

Base text:
Self-replicating UEFI app

Written in C

UEFI generation 1: x86-64
x64 self-replicating UEFI app - program logic breakdown

gBS->HandleProtocol()

Retrieve LoadedImageProtocol

SimpleFilesystemProtocol->OpenVolume()

Retrieve Root Volume

FileProtocol->OpenFile()

Open Host File

gBS->HandleProtocol()

Retrieve SimpleFilesystemProtocol

FileProtocol->OpenFile()

Open Target File

FileProtocol->ReadFile()

Read host file into buffer

FileProtocol->WriteFile()

Write buffer to target file

gBS->AllocatePool()

Allocate buffer to hold file contents

gBS->FreePool()

Free buffer

FileProtocol->CloseFile()

Close Target File, Host File + Root Volume

UEFI generation 1: x86-64
x64 self-replicating UEFI app - program logic breakdown

gBS->HandleProtocol()

Retrieve LoadedImageProtocol

gBS->HandleProtocol()

Retrieve SimpleFileSystemProtocol

UEFI generation 1: x86-64
x64 self-replicating UEFI app - program logic breakdown

SimpleFileSystemProtocol->OpenVolume()

Retrieve Root Volume

UEFI generation 1: x86-64
x64 self-replicating UEFI app - program logic breakdown

FileProtocol.OpenFile()

Open Host File

FileProtocol.OpenFile()

Open Target File

UEFI generation 1: x86-64
x64 self-replicating UEFI app - program logic breakdown

FileProtocol.ReadFile()

Read host file into buffer

gBS->AllocatePool()

Allocate buffer to hold file contents

UEFI generation 1: x86-64
x64 self-replicating UEFI app - program logic breakdown

FileProtocol->WriteFile()

Write buffer to target file

UEFI generation 1: x86-64
x64 self-replicating UEFI app - program logic breakdown

FileProtocol->CloseFile()

Close Target File,

Close Host File +

Close Root Volume

gBS->FreePool()

Free buffer

UEFI generation 1: x86-64
x64 self-replicating UEFI app - program logic breakdown

gBS->HandleProtocol()

Retrieve LoadedImageProtocol

SimpleFilesystemProtocol->OpenVolume()

Retrieve Root Volume

FileProtocol->OpenFile()

Open Host File

gBS->HandleProtocol()

Retrieve SimpleFilesystemProtocol

FileProtocol->OpenFile()

Open Target File

FileProtocol->ReadFile()

Read host file into buffer

FileProtocol->WriteFile()

Write buffer to target file

gBS->AllocatePool()

Allocate buffer to hold file contents

gBS->FreePool()

Free buffer

FileProtocol->CloseFile()

Close Target File, Host File + Root Volume

UEFI generation 1: x86-64
Golfing the solution
1. Remove unnecessary libraries

and dependencies: Use the
UEFI ecosystem

2. PE Binary Mangling 
[netspooky’s guide to PE
Binary Mangling:  
https://n0.lol/a/pemangle.html]

3. Use the protocols you want,
not the wrappers with extra
fluff: 
e.g. OpenProtocol() is a
wrapper for HandleProtocol()

First call to gBS function HandleProtocol in my winning BGGP4 entry

https://n0.lol/a/pemangle.html

Final winning entry for BGGP4:
Self-replicating UEFI app

Written in x64 assembly
https://youtu.be/MglEnqr-1yY

https://youtu.be/MglEnqr-1yY

UEFI generation 1: x86-64
What did you learn at school today?
• Leverage the UEFI ecosystem by

walking from Protocol interface to
Protocol interface —> better
understanding of UEFI internals and
base knowledge for building better
exploits

• Building ROP chains for SMM
exploits to bypass
Smm_CodeCheck_En

• New knowledge of PE Binary
Mangling

• Knowledge of how to write UEFI
shellcode

• even if you write an exploit in C,
knowing how to write UEFI
shellcode for a payload is
essential

Walter Benjamin, “The Task of the Translator,” translated by Steven Rendall, page 159.

“The translator's task consists in this: to find the intention
toward the language into which the work is to be translated,
on the basis of which an echo of the original can be
awakened in it.”

UEFI generation 2: arm64

UEFI generation 2: arm64
The specs

• This is not an entry for BGGP4… what are the goals of this UEFI quine?

• Confirm that a UEFI quine is *possible* on Aarch64/ARM64 architecture

• Translate original x64 solution to valid working solution in arm64 assembly

• Golfing -> Optimize for small size to maximize benefit of shellcode

• What are the goals for this UEFI arm64 project?

• Advance mastery of arm64 assembly for teaching OST2 ARM Assembly class

• Practice writing UEFI shellcode in arm64 assembly

• Better understand the nuances of UEFI RE and exploit dev on arm64

UEFI generation 2: arm64
Methodology

1. Recompile my valid working solution (a self-replicating UEFI app) in C with
an arm64 (edk2 calls it aarch64) toolchain under the edk2 build system ->
working solution to use as a base template

2. Use the C solution as a base text and translate the quine from C to
assembly —> Reverse engineer the C solution

3. Reverse engineer, rewrite and refactor the assembly

The task of the translator is to be a cross-compiler?
Bonus Step 0:

Start with a
“Hello world”

UEFI app written
in arm64
assembly

UEFI generation 2: arm64
arm64 assembly building blocks: handoff state

X0 - EFI_HANDLE

X1 - EFI_SYSTEM_TABLE

X30 - Return Address

Source: UEFI Specification - 2.3.6.2. Handoff State 
https://uefi.org/specs/UEFI/2.10/02_Overview.html#handoff-state-4

https://uefi.org/specs/UEFI/2.10/02_Overview.html#handoff-state-4

Base text: Self-replicating UEFI app
Written in C, cross-compiled for arm64
https://youtu.be/af8IanzkYyQ

https://youtu.be/af8IanzkYyQ

Walter Benjamin, “The Task of the Translator,” translated by Steven Rendall, page 161.

“In reality, with regard to syntax, word-for-word translation
completely rejects the reproduction of meaning and
threatens to lead directly to incomprehensibility.”

arm64 UEFI quine
RE and xdev

arm64 UEFI quine
RE and xdev

UEFI generation 2: arm64
Golfing the solution
1. Use architecture-specific techniques

that leverage arm64 features

• e.g. the ARM barrel shifter can be
leveraged for the painstaking
process of correctly loading a target
128-byte GUID into the correct
register

2. Take the time to figure out the stack
frame layout with all essential data for
UEFI quine

3. Remember that the process for
golfing a binary in one assembly
language (x64) is not a 1:1 mapping of
the golfed binary in a different
assembly language (arm64)

Stack frame layout of arm64 solution

arm64 UEFI quine arm64 solution

x64 solution

arm64 UEFI quine arm64 solution

x64 solution

arm64 UEFI quine arm64 solution

x64 solution

UEFI generation 2: arm64
RE and development tools

• Write the assembly program and build it with the edk2 build system

• This was easiest option because I wrote this on an arm64 machine (an M1 MacBook Pro) but the bindings for arm64 with
the native Xcode Tools command line tools are for *Darwin* arm64 and for generating Mach-O arm64 binaries

• UEFI apps and drivers are predominately PE files (and occasionally TE) that don’t use the Darwin bindings

• The edk2 build system finally came through and was up to this task of generating arm64 UEFI apps

• For an assembler with solid UEFI support, there is the ARM-specific flavor of FASM: FASMARM: https://arm.flatassembler.net/

• [Note FASMARM only supports 32-bit and 64-bit ARM architectures up until v8; valid solution for ARM32 builds but not
arm64 builds)

• Hex editor (xxd, hexdump)

• Ghidra with efiSeek and ghidra-firmware-utils

• radare2 for disassembly

• QEMU and gdb for debugging/testing

https://arm.flatassembler.net/
https://github.com/DSecurity/efiSeek
https://github.com/al3xtjames/ghidra-firmware-utils

Final arm64 quine:
Self-replicating UEFI app
Written in arm64 assembly

https://youtu.be/C-jaMoCwdJE

https://youtu.be/C-jaMoCwdJE

arm64 UEFI debugging
qemu & gdb

UEFI generation 2: arm64
What did you learn at school today?
• Leverage the UEFI ecosystem by walking from Protocol interface to Protocol

interface —> better understanding of UEFI internals and base knowledge for
building better exploits

• Building ROP chains for arm64 exploits

• Learning how to set up debugging for arm64 UEFI apps/drivers

• Knowledge of how to write UEFI shellcode for arm64

• Expanded repertoire of knowledge and skills for UEFI exploit dev

• Additional working payloads for arm64 UEFI exploits

UEFI generation 3: EBC

EBC - EFI Byte Code
Why EBC?

• EBC was a natural fit as the final architecture to choose for this project because of
the inherent variability/malleability of natural indexing and the EBC spec itself

• EBC aims to become something of a tower of Babel: a platform-agnostic
architecture specification for PCI option ROM implementation; it uses natural-
indexing to adjust the width of its instructions (32-bit or 64-bit) depending on the
architecture of the host

• EBC is an intermediate language (like LLVM byte code, Java byte code, [insert your
favorite byte code here]) and it is run in the EFI Byte Code Virtual Machine (EBCVM)

• If a compiler is a translator, then EBC could be considered the holy scripture [per
Benjamin’s metaphor])…

Walter Benjamin, “The Task of the Translator,” translated by Steven Rendall, page 165.

“For to some degree all great writings, but above all holy
scripture, contain their virtual translation between the lines.
The interlinear version of the holy scriptures is the prototype
or ideal of all translation.”

• EBCVM uses 8 general purposes registers:

• R0-R7

• EBCVM has 2 dedicated registers:

• IP (instruction pointer)

• F (Flags register)

• Natural indexing: uses a natural unit to
calculate offsets of data relative to a base
address, where a natural unit is defined as:

• Natural unit == sizeof (void *)

UEFI generation 3: EBC
UEFI EBC architecture details

Source: “UEFI Spec, Chapter 22: EFI Byte Code Virtual Machine,”

https://uefi.org/specs/UEFI/2.10/22_EFI_Byte_Code_Virtual_Machine.html#natural-indexing

https://uefi.org/specs/UEFI/2.10/22_EFI_Byte_Code_Virtual_Machine.html#natural-indexing

EBC - EFI Byte Code
If EBC is so great then why haven’t I heard of it?

• Only one compiler specifically designed to target valid EBC
binaries: the proprietary Intel C compiler for EBC

• This proprietary Intel C compiler for EBC was available for the
low price of $995 [to my knowledge, it is no longer available;
now the page on the Intel Products site redirects to an IoT toolkit
for $2399]

• Open-source options are available … sort of

• fasm-ebc is the closest open-source version to the Intel C
compiler for EBC but it can’t handle edge cases for encoding
instructions with natural-indexing [see this issue in the
archived fasm-ebc GitHub repo:]

• Very few in-the-wild reference EBC images

• EBC is technically “no longer part of the spec”

• Chapter 22 doesn’t exist. Chapter 22 never existed.

EBC - EFI Byte Code
If EBC is a dead ISA with little to no reference implementations why are you talking about it now?

• What if there were legacy/deprecated features lingering in
a codebase for years…

• What if IBVs/OEMs were slow to patch platform firmware
and remove legacy/deprecated features…

• EBC interpreter is still part of the main branch in
Tianocore’s edk2

• IBVs/OEMs fork edk2, along with the EBC interpreter…

• … then a lot of machines might have the EBC
interpreter, and can run EBC binaries

• Just because this feature is hardly (if ever) used, doesn’t
mean it can’t be leveraged

• To be continued… [in VX-Underground Black Mass, vol. 3]

EBC - EFI Byte Code
The nearly impossible task of writing a UEFI EBC quine

• Frankly, I became obsessed with EBC

• My goals for this project were the following:

• 1. Translate my original self-replicating UEFI app from x64 to EBC and confirm that a
self-replicating EBC UEFI app could run in a standard UEFI environment.

• 2. Leveraging my new knowledge of EBC development, use my self-replicating EBC
app as a template for a new EBC UEFI virus that performs graphics manipulation via
the GOP (Graphics Output Protocol).

• 3. Explore uses of EBC and the EBCVM for novel UEFI malware development --
including but not limited to PCI option ROM attacks, polymorphism, metamorphism
and graphics.

EBC - EFI Byte Code
Translating UEFI quine from x64 to EBC: HandleProtocol()

My implementation of the HandleProtocol() function in EBC UEFI quine

UEFI generation 3: EBC
RE and development tools

• Open-source version of the EBC compiler: fasm-ebc 
https://github.com/pbatard/fasmg-ebc

• Hex editor (xxd, hexdump)

• ebcvm: https://github.com/yabits/ebcvm

• Ghidra with efiSeek and ghidra-firmware-utils and an EBC plugin:

• https://github.com/meromwolff/Ghidra-EFI-Byte-Code-Processor/

https://github.com/pbatard/fasmg-ebc
https://github.com/yabits/ebcvm
https://github.com/DSecurity/efiSeek
https://github.com/al3xtjames/ghidra-firmware-utils
https://github.com/meromwolff/Ghidra-EFI-Byte-Code-Processor/

Applications of
“The Task of the Translator” to
UEFI xdev and malware art

Source: Vincent Zimmer, “EFI Byte Code,” Saturday, August 1, 2015,

 https://vzimmer.blogspot.com/2015/08/efi-byte-code.html

UEFI Exploit dev
Well, how did I get here?

• My research on this began after I kept running into the same problem at work: I was *finding*
UEFI vulnerabilities, but I didn’t know how to write exploits for UEFI

• UEFI exploit dev is like many forms of xdev/malware development/RE: an ongoing process

• How did I learn to write UEFI exploits?

• 1. Reverse engineering and replicating the techniques of other PoCs [Translating PoC’s, if
you will]

• 2. Learning about UEFI by writing UEFI apps and drivers [How do you learn a language?
How do you learn to write UEFI exploits? Exploit dev is like learning a language: it requires
practice and accepting that you’ll fail many times before you communicate what you want
to say  
(e.g. pwn a target)]

SMM Callout Exploit dev
Reverse Engineering earlier malware/PoCs
• How does one start writing an exploit for a new system/an unfamiliar target?

• Understand the target:

• Build foundational knowledge (RTFM - the UEFI spec, Beyond BIOS, Rootkits and Bootkits)

• Find previous notable work in UEFI exploit development/malware, and read, re-read the
base text

• “Translate a base text” : Try to translate the same exploit technique on a different
vulnerable target

• e.g. Use cr4sh’s SMM callout PoC for a vulnerability in SystemSmmAhciAspiLegacyRt
[“Exploiting SMM callout vulnerabilities in Lenovo firmware”, http://blog.cr4.sh/2016/02/
exploiting-smm-callout-vulnerabilities.html], as a template for writing an SMM callout
exploit for a vulnerability in an IdeBusDxe driver

http://blog.cr4.sh/2016/02/exploiting-smm-callout-vulnerabilities.html
http://blog.cr4.sh/2016/02/exploiting-smm-callout-vulnerabilities.html
http://blog.cr4.sh/2016/02/exploiting-smm-callout-vulnerabilities.html
http://blog.cr4.sh/2016/02/exploiting-smm-callout-vulnerabilities.html

UEFI Exploit dev
Reverse Engineering earlier malware/PoCs

• There is no ROP Emporium for UEFI specifically, and there are very few
examples of UEFI-specific CTF challenges [Notable exception: SMM Cowsay
from UIUCTF 2022, which we’ll return to] that you can use for practice

• But there are good resources for learning all of the skills you’ll need to write
UEFI exploits

• No exploit dev roadmap?  
Honey, that’s what I call a make-your-own-adventure CTF

UEFI Exploit dev
Make-your-own-adventure CTF
• (OST2) Architecture 4021: Introductory UEFI 

https://ost2.fyi/Arch4021

• (OST2) Architecture 4001: x86-64 Intel Firmware Attack & Defense 
https://ost2.fyi/Arch4001

• (OST2) Hardware 1101: Intel SPI Analysis 
https://ost2.fyi/HW1101

• UEFI-Lessons by Kostr: https://github.com/Kostr/UEFI-Lessons/

• Tools

• Chipsec: https://chipsec.github.io/

• UEFITool: https://github.com/LongSoft/UEFITool

https://ost2.fyi/Arch4021
https://ost2.fyi/Arch4001
https://ost2.fyi/HW1101
https://github.com/Kostr/UEFI-Lessons/
https://chipsec.github.io/
https://github.com/LongSoft/UEFITool

UEFI Exploit dev: SMM Callouts
Started from ring -2 now we’re calling out to an attacker-
controlled region of memory

SMM Callout
?????

UEFI Exploit dev: SMM Callouts
Started from ring -2 now we’re calling out to an attacker-controlled region of memory

• So… you found an SMM callout vulnerability in a combined SMM/DXE driver. Now what?

• Well… How does an exploit for an SMM callout work?

• What process is it disrupting or manipulating or interfering with?

• What is the starting state of the UEFI firmware’s environment before and after a successful SMM callout
exploit?

• What are the critical data structures to know?

• SMRAM

• EFI Boot Services Table & EFI Runtime Services Table

• EFI System Table

• SMMC

SMM (System Management Mode)
Overview

• The most privileged x86 processor mode — ring -2 [we’re going to ignore ME, but yes
that’s ring -3, good job]

• The processor enters SMM only when a System Management Interrupt (SMI) is
invoked

• SMIs have the highest priority of all interrupts — higher priority than NMIs (non-
maskable interrupts) and MIs (maskable interrupts)

• SMM is meant to act as a privileged and *separate* (read isolated) processor mode for
handling critical system functionality that needs to proceed uninterrupted (i.e. power
management, etc.)

• SMM code and data reside in SMRAM

• SMM code and data (meaning SMI handler code and
data) is stored in SMRAM

• SMRAM = a protected region of a processor’s
address space, dedicated to storing SMM code and
data

• SMRAM is locked (or it should be) during Platform
Initialization (PI), so that SMM code and data in
SMRAM are not accessible by code outside of
SMRAM

• SMRAM code should not be reachable by code
running in kernel space or userspace

• Entering SMM is triggered by an SMI, which includes
*saving execution context of code running outside of
SMRAM*

• After execution of SMI handler code, RSM instruction
triggers the restoration of the initial saved state

Image credit: 
"Through the SMM Class and a Vulnerability Found There." Bruno Pujos,

January 14, 2020, Synactiv

https://www.synacktiv.com/en/publications/through-the-smm-class-and-a-

vulnerability-found-there.html

How do we invoke an SMI if SMI
Handler code is in SMRAM and

SMRAM is a theoretically protected
region of memory? How can we

invoke an SMI handler with
necessary arguments if we’re

outside of SMRAM?

SMM (System Management Mode)

SMRAM

https://www.synacktiv.com/en/publications/through-the-smm-class-and-a-vulnerability-found-there.html
https://www.synacktiv.com/en/publications/through-the-smm-class-and-a-vulnerability-found-there.html

Source: 
“A Tour Beyond BIOS Secure SMM Communication in the EFI Developer Kit II”

Jiewen Yao, Vincent J. Zimmer, Star Zeng, Intel, April 26, 2016

SMM (System Management Mode)

The Communication Buffer
• SMM_Core_Private_Data structure:

• Used as a shared buffer for data during
communication between SMRAM/non-SMRAM

• Easily identifiable by “smmc” signature in
memory

• EFI_SMM_Communicate Protocol requires that
the Smm Communicate Buffer has the following
structure:

• GUID of SmiHandler you want to communicate
with

• The size of the data you’re sending to the SMI
handler

• The data

SMM Callouts
How

• When code running in SMM (so SMI
handler code) reaches out to a data
structure/code located outside of
SMRAM, an SMM callout vuln can arise

• SMRAM == **safe** (relatively)

• EFI_BOOT_SERVICES and
EFI_RUNTIME_SERVIES == data
structures that are located outside of
SMRAM

• Code in either of these data
structures can be attacker controlled!

Source: “A New Class of Vulnerabilities in SMI Handlers,” 
Figure 1 – Schematic overview of an SMM callout, source: CanSecWest 2015

http://www.c7zero.info/stuff/ANewClassOfVulnInSMIHandlers_csw2015.pdf

SMM Callouts
why should I care?

• A successful SMM exploit could
allow an attacker arbitrary code
execution within the most
privileged execution level (ring
-2) of the OS

• Ring -2 code execution would
effectively bypass security
protections at all other execution
levels and allow an attacker to
install a persistent malicious
firmware backdoor or implant. Source: “A New Class of Vulnerabilities in SMI Handlers,” 

Figure 1 – Schematic overview of an SMM callout, source: CanSecWest 2015

http://www.c7zero.info/stuff/ANewClassOfVulnInSMIHandlers_csw2015.pdf

SMM Callout
IdeBusDxe

[instance of the IdeBusDxe
vulnerability reported by Binarly 
BRLY-2021-020
CVE-2021-45970]

SwSmi Handler
executing code in

SMRAM

Necessary conditions for callout:

CommBuffer != NULL

CommBufferSize != NULL

first DWORD of CommBuffer == 1

SwSmi Handler calling out to
function in *attacker-controlled*

EFI_BOOT_SERVICES table

https://www.binarly.io/advisories/brly-2021-020
https://nvd.nist.gov/vuln/detail/CVE-2021-45970

SMM Callout
qemu & gdb

Hell yeah

SMM callout exploit dev
Methodology overview, v.1
Adapted from base text: “Exploiting SMM callout vulnerabilities in Lenovo firmware” by cr4sh

Since SMI Handler is making a call *out* of SMRAM to a function in this data structure --
EFI_BOOT_SERVICES -- and EFI_BOOT_SERVICES can be attacker-controlled, an attacker would
need to do the following to exploit this SMM callout and achieve arbitrary code execution in ring -2.

1. Identify the location of the EFI_BOOT_SERVICES data structure in memory

2. Determine the SW SMI which triggers the execution of the callout in vulnerable driver

3. Allocate space for shellcode in memory + save address of shellcode for use in step 4

4. Set the address of the LocateHandleBuffer function within the EFI_BOOT_SERVICES table to point
to the address of shellcode (overwrite function pointer of LocateHandleBuffer to redirect code flow)

5. Trigger the SW SMI using the identified SW SMI number identified in step 2.

6. Attacker shellcode is executed in ring -2

http://blog.cr4.sh/2016/02/exploiting-smm-callout-vulnerabilities.html

SMM Callout exploit v. 1

SMM Callout v.1
Chipsec

• Back to the drawing board

UEFI Exploit dev: SMM Callouts
Started from ring -2 now we’re calling out to an attacker-controlled region of
memory
~*There are no binary exploitation mitigations present in the vulnerable SMM/
DXE driver but Chipsec won’t run on the host machine so now we’re reversing
the swsmi function in Chipsec and replicating its functionality in C *~

SMM callout exploit dev
Methodology overview, v.2
Since SMI Handler is making a call *out* of SMRAM to a function in this data structure -- EFI_BOOT_SERVICES --
and EFI_BOOT_SERVICES can be attacker-controlled, an attacker would need to do the following to exploit this
SMM callout and achieve arbitrary code execution in ring -2.

1. Identify the location of the EFI_BOOT_SERVICES data structure in memory

2. Determine the SW SMI which triggers the execution of the callout in vulnerable driver

3. Allocate space for shellcode in memory + save address of shellcode for use in step 4

4. Set the address of the LocateHandleBuffer function within the EFI_BOOT_SERVICES table to point to the
address of shellcode (overwrite function pointer of LocateHandleBuffer to redirect code flow)

5. Trigger the SW SMI using the identified SW SMI number identified in step 2.

A. Set up communication buffer

B. SmmCommunicate()

C. Write to I/O ports 0xb2 and 0xb3

6. Attacker shellcode is executed in ring -2

SMM Callout v. 2
Chipsec? Never heard of her.

UEFI Exploit dev: SMM Callouts
Mitigations: SMM_CODE_CHK_EN

• **Requires building a ROP chain and calculating SMBASE**

• Run ropper on your target UEFI driver, find some gadgets, build your exploit

• A few resources on bypassing SMM_CODE_CHK_EN with ROP:

• Binarly: “The Dark Side of UEFI: A technical Deep-Dive into Cross-Silicon Exploitation” 
https://www.binarly.io/blog/the-dark-side-of-uefi-a-technical-deep-dive-into-cross-silicon-
exploitation

• Syntactiv: “Code Checkmate in SMM” by Bruno Pujos: https://www.synacktiv.com/en/publications/
code-checkmate-in-smm

• cr4sh: “Exploiting AMI Aptio firmware on example of Intel NUC” 
http://blog.cr4.sh/2016/10/exploiting-ami-aptio-firmware.html

• Many more examples

https://www.binarly.io/blog/the-dark-side-of-uefi-a-technical-deep-dive-into-cross-silicon-exploitation
https://www.binarly.io/blog/the-dark-side-of-uefi-a-technical-deep-dive-into-cross-silicon-exploitation
https://www.synacktiv.com/en/publications/code-checkmate-in-smm
https://www.synacktiv.com/en/publications/code-checkmate-in-smm
https://www.synacktiv.com/en/publications/code-checkmate-in-smm
https://www.synacktiv.com/en/publications/code-checkmate-in-smm
http://blog.cr4.sh/2016/10/exploiting-ami-aptio-firmware.html

UEFI Exploit dev: GOP Complex

UEFI Exploit dev: GOP Complex (REcon 2024)
Transforming my polymorphic art engine bootkit: from MBR to UEFI

I wanted to explore the UEFI ecosystem and find as many different techniques
as possible that I could leverage to turn the UEFI firmware into a VX factory, into
a constantly evolving warehouse art show.

—John von Neumann, 1946, [Preface, “Turing’s Cathedral,” George Dyson]

“I am thinking about something much more important than
bombs. I am thinking about computers.”

The duality of exploit development: creation + destruction

War machine + creative machine = weird machine

Weird machine: an exploit, an elegant hack

How do you elevate a single exploit and build the complex exploit chain of a
sophisticated PoC/malware?

~*The xdev to malware dev pipeline *~  
Sponsored by BigVX™

Exploit
development

Artistic/creative
practice

Exploit
development

Artistic/creative
practice

The antidote to corporate bureaucracy crushing creativity in xdev, malware dev and vx:

A symbiotic relationship between artistic/creative practice and exploit development

Resulting in devastating exploits and incredible artwork that push the boundaries of both fields

GOP Complex: Thesis

Exploit development + art
=

A match made in VX heaven

UEFI Exploit Dev is amazing and here’s why
I love UEFI it’s my favorite

• Exploit mitigations that are common on modern OSes (i.e. ASLR, DEP, stack canaries,
etc.) aren’t always implemented or implemented fully on UEFI BIOS firmwares

• If binary exploit mitigations are applied, bypass techniques aren’t unfamiliar (i.e. ROP/
JOP chains for bypassing SMM Code_Check_En)

• UEFI is a complex ecosystem -> error-prone and incomplete coverage of applied
protections

• UEFI is so expansive and unexplored that it offers an environment for creativity in
research and exploit development

• Firmware + hardware + low-level exploit dev + cross-architecture exploits == <3

The art of binary golfing unlocks new techniques in UEFI xdev

• UEFI can be understood as its own ecosystem between the OS and onboard (i.e. SPI
flash chip-resident) firmware. It operates like an intermediary OS in and of itself.
Thus, in order to write effective UEFI-targeting exploits, we have to understand how
to manipulate data structures within UEFI.

• My artistic practice and creative projects were *essential* to understanding code
patterns/structs during RE process of vulnerable LogoFAIL driver
SystemImageDecoder (BRLY-LOGOFAIL-2023-027/CVE-2023-5058) for GOP
Complex (REcon 2024)

• Binary golfing my solutions for the same UEFI quine across 3 different architectures
led to new breakthroughs in my work and the development of novel techniques for
UEFI xdev

Conclusion

Walter Benjamin, “The Task of the Translator,” translated by Steven Rendall, page 161.

“Just as fragments of a vessel, in order to be fitted together, must correspond to
each other in the tiniest details but need not resemble each other, so translation,
instead of making itself resemble the meaning of the original, must lovingly, and in
detail, fashion in its own language a counterpart to the original's mode of
intention, in order to make both of them recognizable as fragments of a vessel, as
fragments of a greater language.”

Q & A

UEFI Exploitation/Research Resources
“Low Level PC/Server Attack & Defense Timeline,” By @XenoKovah of @DarkMentorLLC

https://darkmentor.com/timeline.html

“Debugging System with DCI and Windbg,” Satoshi Tanda, 29 March 2021,

https://standa-note.blogspot.com/2021/03/debugging-system-with-dci-and-windbg.html

"How Many Million BIOSes would You Like to Infect?" Xeno Kovah & Corey Kallenberg, LegbaCore, http://
legbacore.com/Research_files/HowManyMillionBIOSWouldYouLikeToInfect_Full2.pdf

“Leaked Intel Boot Guard keys: What happened? How does it affect the software supply chain?” Binarly Team,
Binarly, 9 November 2022,

https://www.binarly.io/blog/leaked-intel-boot-guard-keys-what-happened-how-does-it-affect-the-software-supply-
chain

“Breaking through another Side: Bypassing Firmware Security Boundaries,” Alex Matrosov, Binarly, 14 July 2021,

https://www.binarly.io/blog/breaking-through-another-sidebypassing-firmware-security-boundaries

https://darkmentor.com/timeline.html
https://standa-note.blogspot.com/2021/03/debugging-system-with-dci-and-windbg.html
http://legbacore.com/Research_files/HowManyMillionBIOSWouldYouLikeToInfect_Full2.pdf
http://legbacore.com/Research_files/HowManyMillionBIOSWouldYouLikeToInfect_Full2.pdf
https://www.binarly.io/blog/leaked-intel-boot-guard-keys-what-happened-how-does-it-affect-the-software-supply-chain
https://www.binarly.io/blog/leaked-intel-boot-guard-keys-what-happened-how-does-it-affect-the-software-supply-chain
https://www.binarly.io/blog/breaking-through-another-sidebypassing-firmware-security-boundaries

UEFI Exploitation/Research Resources
“Now You See It... TOCTOU Attacks Against BootGuard,” Peter Bosch & Trammell Hudson, HackInTheBox Conference 2019,

https://conference.hitb.org/hitbsecconf2019ams/materials/D1T1%20-
%20Toctou%20Attacks%20Against%20Secure%20Boot%20-%20Trammell%20Hudson%20&%20Peter%20Bosch.pdf

“Who Watches BIOS Watchers?” Alex Matrosov, Binarly, 12 July 2021,

https://www.binarly.io/blog/who-watches-bios-watchers

“Firmware is the new Black — Analyzing Past 3 years of BIOS/UEFI Security Vulnerabilities” Bruce Monroe & Rodrigo Rubira
Branco & Vincent Zimmer, BlackHat USA 2017,

https://github.com/rrbranco/BlackHat2017/blob/master/BlackHat2017-BlackBIOS-v0.13-Published.pdf

“The Keys to the Kingdom and the Intel Boot Process,” Eclypsium Blog, 28 June 2023, Eclypsium,

https://eclypsium.com/blog/the-keys-to-the-kingdom-and-the-intel-boot-process/

“BootGuard,” Trammell Hudson, 8 November 2020,

https://trmm.net/Bootguard/

https://conference.hitb.org/hitbsecconf2019ams/materials/D1T1%20-%20Toctou%20Attacks%20Against%20Secure%20Boot%20-%20Trammell%20Hudson%20&%20Peter%20Bosch.pdf
https://conference.hitb.org/hitbsecconf2019ams/materials/D1T1%20-%20Toctou%20Attacks%20Against%20Secure%20Boot%20-%20Trammell%20Hudson%20&%20Peter%20Bosch.pdf
https://www.binarly.io/blog/who-watches-bios-watchers
https://github.com/rrbranco/BlackHat2017/blob/master/BlackHat2017-BlackBIOS-v0.13-Published.pdf
https://eclypsium.com/blog/the-keys-to-the-kingdom-and-the-intel-boot-process/
https://trmm.net/Bootguard/

UEFI Exploitation/Research Resources
“Safeguarding rootkits: Intel BIOS Guard,” Alexander Ermolov, Zero Nights,

https://github.com/flothrone/bootguard/blob/master/Intel%20BootGuard%20final.pdf

“Securing the Boot Process: The hardware root of trust,” Jessie Frazelle, 2019

https://dl.acm.org/doi/fullHtml/10.1145/3380774.3382016

“CPUMicrocodes: Intel, AMD, VIA & Freescale CPU Microcode Repositories,” platomav, GitHub

https://github.com/platomav/CPUMicrocodes

“Breaking Firmware Trust from Pre-EFI: Exploiting Early Boot Phases,” Binarly, BlackHat USA 2022,

https://www.youtube.com/watch?v=Z81s7UIiwmI

https://github.com/flothrone/bootguard/blob/master/Intel%20BootGuard%20final.pdf
https://dl.acm.org/doi/fullHtml/10.1145/3380774.3382016
https://github.com/platomav/CPUMicrocodes
https://www.youtube.com/watch?v=Z81s7UIiwmI

ARM UEFI Exploitation/Research Resources
“Attacking the ARM’s TrustZone,” Joffrey Gibson, QuarksLab, 31 July 2018,

https://blog.quarkslab.com/attacking-the-arms-trustzone.html

“Introduction to Trusted Execution Environment: ARM's TrustZone,” Joffrey Gibson, QuarksLab, 19 June
2018,

https://blog.quarkslab.com/introduction-to-trusted-execution-environment-arms-trustzone.html

“The Dark Side of UEFI: A technical Deep-Dive into Cross-Silicon Exploitation

Binarly efiXplorer Team, Binarly, 8 February 2024,

https://www.binarly.io/blog/the-dark-side-of-uefi-a-technical-deep-dive-into-cross-silicon-exploitation

“Multiple Vulnerabilities in Qualcomm and Lenovo ARM-based Devices,”

Binarly Team, Binarly, 9 January 2023,

https://www.binarly.io/blog/multiple-vulnerabilities-in-qualcomm-and-lenovo-arm-based-devices

https://blog.quarkslab.com/attacking-the-arms-trustzone.html
https://blog.quarkslab.com/introduction-to-trusted-execution-environment-arms-trustzone.html
https://www.binarly.io/blog/the-dark-side-of-uefi-a-technical-deep-dive-into-cross-silicon-exploitation
https://www.binarly.io/blog/multiple-vulnerabilities-in-qualcomm-and-lenovo-arm-based-devices

UEFI Exploitation/Research Resources
"Moving From Common Sense Knowledge about UEFI To Actually Dumping UEFI Firmware," Assaf Carlsbad, Sentinel One,  
https://www.sentinelone.com/labs/moving-from-common-sense-knowledge-about-uefi-to-actually-dumping-uefi-firmware/

"Moving From Manual Reverse Engineering of UEFI Modules To Dynamic Emulation of UEFI Firmware," Assaf Carlsbad,
Sentinel One,  
https://www.sentinelone.com/labs/moving-from-manual-reverse-engineering-of-uefi-modules-to-dynamic-emulation-of-
uefi-firmware/

"Moving From Dynamic Emulation of UEFI Modules To Coverage-Guided Fuzzing of UEFI Firmware" Assaf Carlsbad,
Sentinel One,  
https://www.sentinelone.com/labs/moving-from-dynamic-emulation-of-uefi-modules-to-coverage-guided-fuzzing-of-uefi-
firmware/

"Adventures From UEFI Land: the Hunt For the S3 Boot Script," Assaf Carlsbad, Sentinel One,  
https://www.sentinelone.com/labs/adventures-from-uefi-land-the-hunt-for-the-s3-boot-script/

https://www.sentinelone.com/labs/moving-from-common-sense-knowledge-about-uefi-to-actually-dumping-uefi-firmware/
https://www.sentinelone.com/labs/moving-from-manual-reverse-engineering-of-uefi-modules-to-dynamic-emulation-of-uefi-firmware/
https://www.sentinelone.com/labs/moving-from-manual-reverse-engineering-of-uefi-modules-to-dynamic-emulation-of-uefi-firmware/
https://www.sentinelone.com/labs/moving-from-dynamic-emulation-of-uefi-modules-to-coverage-guided-fuzzing-of-uefi-firmware/
https://www.sentinelone.com/labs/moving-from-dynamic-emulation-of-uefi-modules-to-coverage-guided-fuzzing-of-uefi-firmware/
https://www.sentinelone.com/labs/adventures-from-uefi-land-the-hunt-for-the-s3-boot-script/

SMM Callout resources
“Exploiting SMM callout vulnerabilities in Lenovo firmware” by cr4sh

“Building reliable SMM backdoor for UEFI based platforms” by cr4sh,  
http://blog.cr4.sh/2015/07/building-reliable-smm-backdoor-for-uefi.html

"Code Check(mate) in SMM." Bruno Pujos, January 14, 2020, Synactiv,  
https://www.synacktiv.com/en/publications/code-checkmate-in-smm.html

"Through the SMM Class and a Vulnerability Found There." Bruno Pujos, January 14, 2020, Synactiv,  
https://www.synacktiv.com/en/publications/through-the-smm-class-and-a-vulnerability-found-
there.html

"Another Brick in the Wall: Uncovering SMM Vulnerabilities in HP Firmware," Assaf Carlsbad, Sentinel
One, 
 https://www.sentinelone.com/labs/another-brick-in-the-wall-uncovering-smm-vulnerabilities-in-hp-
firmware/

http://blog.cr4.sh/2016/02/exploiting-smm-callout-vulnerabilities.html
http://blog.cr4.sh/2015/07/building-reliable-smm-backdoor-for-uefi.html
https://www.synacktiv.com/en/publications/code-checkmate-in-smm.html
https://www.synacktiv.com/en/publications/through-the-smm-class-and-a-vulnerability-found-there.html
https://www.synacktiv.com/en/publications/through-the-smm-class-and-a-vulnerability-found-there.html
https://www.sentinelone.com/labs/another-brick-in-the-wall-uncovering-smm-vulnerabilities-in-hp-firmware/
https://www.sentinelone.com/labs/another-brick-in-the-wall-uncovering-smm-vulnerabilities-in-hp-firmware/
https://www.sentinelone.com/labs/another-brick-in-the-wall-uncovering-smm-vulnerabilities-in-hp-firmware/

SMM Callout resources
“SmmExploit,” tandasat, GitHub,

https://github.com/tandasat/SmmExploit

“SmmExploit - FindSystemManagementServiceTable” tandasat, GitHub,

https://github.com/tandasat/SmmExploit/blob/main/Demo/Demo/FindSystemManagementServiceTable.cpp

“PiSmmCore: SMM Core global variable for SMM System Table (SMST) Only accessed as a physical structure in
SMRAM,” tianocore, edk2, GitHub,

https://github.com/tianocore/edk2/blob/stable/202011/MdeModulePkg/Core/PiSmmCore/PiSmmCore.c#L19

“MdeModulePkg: PiSmmIpl,” tianocore, edk2, GitHub,

https://github.com/tianocore/edk2/blob/stable/202011/MdeModulePkg/Core/PiSmmCore/PiSmmIpl.c

“Platform Runtime Mechanism,” version 1.0, UEFI, November 2020,

https://uefi.org/sites/default/files/resources/Platform%20Runtime%20Mechanism%20-%20with%20legal%20notice.pdf

“Platform Runtime Mechanism,” tianocore, edk2-staging repository, GitHub,

https://github.com/tianocore/edk2-staging/tree/PlatformRuntimeMechanism

https://github.com/tandasat/SmmExploit
https://github.com/tandasat/SmmExploit/blob/main/Demo/Demo/FindSystemManagementServiceTable.cpp
https://github.com/tianocore/edk2/blob/stable/202011/MdeModulePkg/Core/PiSmmCore/PiSmmCore.c#L19
https://github.com/tianocore/edk2/blob/stable/202011/MdeModulePkg/Core/PiSmmCore/PiSmmIpl.c
https://uefi.org/sites/default/files/resources/Platform%20Runtime%20Mechanism%20-%20with%20legal%20notice.pdf
https://github.com/tianocore/edk2-staging/tree/PlatformRuntimeMechanism

SMM Callout resources
"Advanced x86: BIOS and System Management Mode Internals, Day 7, System Management Mode (SMM)," Xeno Kovah & Corey
Kallenberg, LegbaCore,  
https://opensecuritytraining.info/IntroBIOS_files/Day1_07_Advanced%20x86%20-%20BIOS%20and%20SMM%20Internals%20-
%20SMM.pdf

"Advanced x86: BIOS and System Management Mode Internals , Day 8, SMRAM (System Management RAM)," Xeno Kovah & Corey Kallenberg,
LegbaCore,  
https://opensecuritytraining.info/IntroBIOS_files/Day1_08_Advanced%20x86%20-%20BIOS%20and%20SMM%20Internals%20-
%20SMRAM.pdf

"Advanced x86: BIOS and System Management Mode Internals , Day 8, SMRAM (System Management RAM)," Xeno Kovah & Corey Kallenberg,
LegbaCore,  
https://opensecuritytraining.info/IntroBIOS_files/Day1_09_Advanced%20x86%20-%20BIOS%20and%20SMM%20Internals%20-
%20SMM%20and%20Caching.pdf

"Advanced x86: BIOS and System Management Mode Internals, Day 10, More Fun with SMM," Xeno Kovah & Corey Kallenberg, LegbaCore,  
https://opensecuritytraining.info/IntroBIOS_files/Day1_10_Advanced%20x86%20-%20BIOS%20and%20SMM%20Internals%20-
%20Other%20Fun%20with%20SMM.pdf

"Advanced x86: BIOS and System Management Mode Internals, Day 11, SMM Conclusion," Xeno Kovah & Corey Kallenberg, LegbaCore,  
https://opensecuritytraining.info/IntroBIOS_files/Day1_11_Advanced%20x86%20-%20BIOS%20and%20SMM%20Internals%20-
%20SMM%20Conclusion.pdf

https://opensecuritytraining.info/IntroBIOS_files/Day1_07_Advanced%20x86%20-%20BIOS%20and%20SMM%20Internals%20-%20SMM.pdf
https://opensecuritytraining.info/IntroBIOS_files/Day1_07_Advanced%20x86%20-%20BIOS%20and%20SMM%20Internals%20-%20SMM.pdf
https://opensecuritytraining.info/IntroBIOS_files/Day1_08_Advanced%20x86%20-%20BIOS%20and%20SMM%20Internals%20-%20SMRAM.pdf
https://opensecuritytraining.info/IntroBIOS_files/Day1_08_Advanced%20x86%20-%20BIOS%20and%20SMM%20Internals%20-%20SMRAM.pdf
https://opensecuritytraining.info/IntroBIOS_files/Day1_09_Advanced%20x86%20-%20BIOS%20and%20SMM%20Internals%20-%20SMM%20and%20Caching.pdf
https://opensecuritytraining.info/IntroBIOS_files/Day1_09_Advanced%20x86%20-%20BIOS%20and%20SMM%20Internals%20-%20SMM%20and%20Caching.pdf
https://opensecuritytraining.info/IntroBIOS_files/Day1_10_Advanced%20x86%20-%20BIOS%20and%20SMM%20Internals%20-%20Other%20Fun%20with%20SMM.pdf
https://opensecuritytraining.info/IntroBIOS_files/Day1_10_Advanced%20x86%20-%20BIOS%20and%20SMM%20Internals%20-%20Other%20Fun%20with%20SMM.pdf
https://opensecuritytraining.info/IntroBIOS_files/Day1_11_Advanced%20x86%20-%20BIOS%20and%20SMM%20Internals%20-%20SMM%20Conclusion.pdf
https://opensecuritytraining.info/IntroBIOS_files/Day1_11_Advanced%20x86%20-%20BIOS%20and%20SMM%20Internals%20-%20SMM%20Conclusion.pdf

ARM64 UEFI Resources
“Arm SystemReady and the UEFI Firmware Ecosystem,” Dong Wei (Arm) Samer El-Haj-Mahmoud (Arm), UEFI 2021 Virtual Plugfest, January 26, 2021

“Arm SystemReady Compliance Program,” ARM,

https://www.arm.com/architecture/system-architectures/systemready-certification-program

“ARM Developer docs: UEFI,” ARM Developer,

https://developer.arm.com/Architectures/Unified%20Extensible%20Firmware%20Interface

“ARM Management Mode Interface Specification System Software on ARM,” ARM Developer,

https://developer.arm.com/documentation/den0060/a/?lang=en

“Base Boot Security Requirements 1.3,” ARM Developer,

https://developer.arm.com/documentation/den0107/latest

“Porting a PCI driver to ARM AArch64 platforms”, Olivier Martin (ARM), UEFI Spring Plugfest – May 18-22, 2015,

https://uefi.org/sites/default/files/resources/UEFI_Plugfest_May_2015_ARM.pdf

“Tailoring TrustZone as SMM Equivalent,” Tony C.S. Lo Senior Manager American Megatrends Inc., UEFI Plugfest March 2018,

https://uefi.org/sites/default/files/resources/UEFI_Plugfest_March_2016_AMI.pdf

https://www.arm.com/architecture/system-architectures/systemready-certification-program
https://developer.arm.com/Architectures/Unified%20Extensible%20Firmware%20Interface
https://developer.arm.com/documentation/den0060/a/?lang=en
https://developer.arm.com/documentation/den0107/latest
https://uefi.org/sites/default/files/resources/UEFI_Plugfest_May_2015_ARM.pdf
https://uefi.org/sites/default/files/resources/UEFI_Plugfest_March_2016_AMI.pdf

EBC Resources
Writing and Debugging Writing and Debugging EBC Drivers EBC Drivers February 27 February 27th 2007,  
https://uefi.org/sites/default/files/resources/EBC_Driver_Presentation.pdf

“EFI Byte Code,” Vincent Zimmer, 1 August 2015,  
https://vzimmer.blogspot.com/2015/08/efi-byte-code.html

“Fasmg-ebc,” pbatard, GitHub,  
https://github.com/pbatard/fasmg-ebc/

“Ebcvm,” yabits, Github, 
https://github.com/yabits/ebcvm/

“Ghidra-EFI-Byte-Code-Processor,” meromwolff, GitHub,  
https://github.com/meromwolff/Ghidra-EFI-Byte-Code-Processor/

“EBC Compiler,” Ravi Narayanaswamy and Jiang Ning Liu, Intel, 2007,  
https://uefi.org/sites/default/files/resources/EBC_Compiler_Presentation.pdf

https://uefi.org/sites/default/files/resources/EBC_Driver_Presentation.pdf
https://vzimmer.blogspot.com/2015/08/efi-byte-code.html
https://github.com/pbatard/fasmg-ebc/
https://github.com/yabits/ebcvm/
https://github.com/meromwolff/Ghidra-EFI-Byte-Code-Processor/
https://uefi.org/sites/default/files/resources/EBC_Compiler_Presentation.pdf

