
Binary Golf
netspooky

Binary Fun Week - Dartmouth College
2025-10-23

id

netspooky

File Enjoyer

Embedded Vuln Research

Protocol / File Format RE

Creator of Binary Golf Grand Prix (BGGP)

Works on zines: tmp.0ut, Phrack

Haunted Computer Club

About Golf

Golfing Through The Ages

Humans have been doing more with less since we started doing things

Computer Examples:

- Sizecoding
- Demoscene
- Code Golf
- Binary Golf

Sizecoding

Code Is Data, Data Is Code

Utilizes programming tricks and platform
quirks

http://www.sizecoding.org/wiki/Main_Page

http://www.sizecoding.org/wiki/Game_of_
Life_32b

32 Byte x86 Game Of Life

Demoscene

Originated in the software cracking scene

Tiny audio / visual payloads tagged releases

Demos are typically 4KB or less

https://www.pouet.net

Absolute Territory - Prismbeings (4KB)

cdak - Quite & orange (4KB)

puls - rrrola (256 bytes)Freespin - Demo for C64 1541
floppy drive (also has a 6502 :))

Code Golf

Creating the shortest possible program that
solves a specific problem.

https://codegolf.stackexchange.com

Fluid by endoh (IOCCC) - A MUST WATCH
https://www.youtube.com/watch?v=QMYfkOtYYlg

Minification

Minification is a practical application of golf,
specifically JavaScript and CSS.

Minified code decreases the amount of
space the text needs to occupy, which is
useful to reduce the amount of bandwidth a
web server uses.

Minified Javascript

Minified CSS

Reduced Instruction Set JS

Uses standard features and quirks of
JavaScript to construct any valid Javascript
code from just 6 characters.

Kolmogorov Complexity

The Kolmogorov Complexity of a string (or other output) is
the length of the shortest program that can reproduce it.

Which string requires the most code to print?

AAAAAAAAAAAAAAAAAAAAAAAAAA

ABCDEFGHIJKLMNOPQRSTUVWXYZ

Nd^6A7rLxM2Sf8%rQ9$9WL2*lU

A Python3 Solution

AAAAAAAAAAAAAAAAAAAAAAAAAA (13 chars, little to no debate)

print("A"*26)

ABCDEFGHIJKLMNOPQRSTUVWXYZ (37 chars, up for debate)

print(''.join(map(chr,range(65,91))))

Nd^6A7rLxM2Sf8%rQ9$9WL2*lU (35 chars, little to no debate)

print("Nd^6A7rLxM2Sf8%rQ9$9WL2*lU")

Binary Golf

Binary Golf is the art of reducing a file's size while
preserving its functionality

Code golf but for file format hackers

A holistic approach to code golf and size coding

Considers the entire file instead of the
programming language representation

Embraces weird machines & undefined behavior

Constraints lead to creativity

Binary Golf Grand Prix

Binary Golf Grand Prix is an annual small file
format competition, currently in its sixth year.
The goal is to make the smallest possible file
that fits the criteria of the challenge.

BGGP lasts for 3 months, currently happening
now! This year’s theme is RECYCLE: Old
Challenges, New Ideas

https://binary.golf/6

Binary Golf Grand Prix

BGGP1 (2020) - Palindrome - Smallest binary that executes the same backward or
forward, must execute in mirrored half of the file

BGGP2 (2021) - Polyglot - Smallest polyglot binaries, points for executing within file
overlays

BGGP3 (2022) - Crash - Smallest file that crashes a program, points for exploits and
patches

BGGP4 (2023) - Replicate - Smallest self replicating file, any format or platform

BGGP5 (2024) - Download - Smallest file that downloads another file.

BGGP6 (2025) - Recycle - Smallest file and/or any past challenge

ELF & Golf

Where Did ELF Come From?

The ELF format was first defined as part of the
ABI for Unix System V Release 4.0 on October
18, 1988

ELF was created to address the limitations of
the COFF format, which itself was created to
replace the a.out format

By 1999, the Linux ELF implementation became
the de facto standard

ELF has had a lot of time to evolve and find use
in a wide variety of applications

ELF's Many Use Cases

Linux Binaries and Libraries

Linux Kernel and Modules

Core Dumps

Bootloaders

Firmware Images

Game Consoles (eg. Playstation 2+)

Internal Formats (eg. textures in Paper Mario: The
Origami King)

ELF’s Flexibility

ELF supports 280+ machine types (architectures or bytecode formats)

Headers can be anywhere in the file (except the ELF header)

Structures can be overlaid on each other

Different needs, different parsers

Golfing relies on parser flexibility

Pictured: An ELF with p_memsz = 0, valid on some
firmwares, doesn’t load with standard tools

ABIs

The ABI defines the context the binary runs, including architecture, alignment, and
calling conventions.

Understanding the ABI means you can see the execution environment from the
program's perspective.

This perspective is essential in understanding how your program works!

Specification vs. Implementation

Specifications are simply
recommendations.

Only what executes is real.

BGGP3: CHIP-8 Sandbox Escape

12 bit address size defined by spec

Care must be taken to prevent
overflows

Multiple implementations have out of
bounds reads and writes within the
emulator from a ROM

https://www.da.vidbuchanan.co.uk/blog
/bggp3.html

BGGP3: 2 Byte Telnet DOS

FF F7 or FF F8 crashes multiple telnet
versions

- FF (255): Interpret As Command
- F7 (247): Erase Character
- F8 (248): Erase Line

The program reads memory that wasn’t
allocated and crashes

This bug went undiscovered for 30 years

https://pierrekim.github.io/blog/2022-08-2
4-2-byte-dos-freebsd-netbsd-telnet

Parser Differentials

ELF is meant to be a general format, but many
parsers are purpose built for a specific subset of
known ELF types and use cases

No two parsers will be implemented the same way

Developers decide what to care about

Those decisions, combined with the program
environment, create the playing field for binary golf.

See “Area41 2014: Ange Albertini & Gynvael Coldwind:
Schizophrenic Files – A file that thinks it's many”

Playing Jenga

Each set of Jenga blocks has its own unique set of characteristics

There are many factors that influence the stability of the tower

You carefully rearrange these blocks to reach new heights

ELF Golf Examples

What Does An ELF Need To Run?

ELF Header - Describes the ELF file

Program Header - Directs the loader to
map pieces of the ELF file into memory

ELF32/x86 - 45 bytes (1999)

Released shortly after ELF was officially adopted as a
standard binary format.

The began with a basic ELF32 generated by GCC,
then switched to nasm. Then started doing overlays.

- 76 bytes overlaid e_phnum and p_type

- 64 bytes overlaid e_shoff and p_type

- 52 bytes overlaid ei_class and p_type

- 45 bytes removed all but the first byte of e_phnum

https://www.muppetlabs.com/~breadbox/software/t
iny/teensy.html

ELF64/x64 - 84 bytes (2018)

Overlaying the
program
header within
the ELF header
at offset 0x1C
and stuffing
code in free
spaces.

ELF64/x64 - 84 bytes (2018)

This actually caused some strange issues when I first
published, on VPSes specifically.

This because of how some hypervisors were
configured to handle power-off events like
LINUX_REBOOT_CMD_POWER_OFF coming from
the guest VM.

Without calling sync, as the man page says, it can
cause data loss.

https://n0.lol/ebm/3/

ELF64/aarch64 - 84 bytes

I wanted to see how easy it was to golf an
aarch64 binary using the same overlay at 0x1C.

This code calls the write() syscall and prints “ELF”

https://tmpout.sh/2/14.html

Kernel Changes Breaking Binary Golf

A patch pushed to Linux kernel 5.7 broke the 84 byte ELF64

The 0x1C overlay trick relied on READ_IMPLIES_EXEC, which made the text segment executable
because it had the read permission, it “failed open”

PT_GNU_STACK not present made the stack executable too

This is determined by p_flags,

which overlaid with e_phoff

with a value of 0x1C.

Kernel Changes Breaking Binary Golf

This was mentioned in the original Muppet Labs tiny ELF article:

…it turns out that, contrary to every expectation, the executable bit can be dropped
from the p_flags field, and Linux will set it for us anyway. Why this works, I honestly
don't know -- maybe because Linux sees that the entry point goes to this segment?
In any case, it works.

This characteristic enabled the ELF overlay in their 45 byte ELF32.

The Patch

Meanwhile, Other ELF64 Overlays Discovered

subvisor - 0x38 in e_ehsize

https://web.archive.org/web/2023121108013
8/https://ftp.lol/posts/small-elf.html

f1acs - 0x31 in e_flags

ELF64/x64 - 82 bytes (2021)

I tested every possible overlay of the ELF and
program header for an ET_EXEC type ELF64.

The only valid overlay lower than 0x1C was
0x1A, which required 5-level paging to extend
virtual addresses from 48 to 57 bits.

ELF64/x64 - 82 bytes (2021)

It worked! Albeit very slowly in qemu…

It was impractical due to needing a
very specific CPU.

https://tmpout.sh/2/11.html

…and sometimes you have to build and debug the kernel
https://github.com/deepseagirl/easylkb

Sometimes people don’t understand…

ELF64/x64 - 73 bytes by lm978 (2023)

lm978 created a 73 byte elf that returns 43,
and a 81 byte ELF that prints Hello World!

They created a smaller ELF than anyone else
so far by simply starting from first principles.

Used the p_type of ET_DYN (3) instead of
ET_EXEC (2)

p_flags overlay with e_type retains the
bottom bit needed to set PF_X

https://tmpout.sh/3/22.html

BGGP2: Janus by xcellerator (2021)

A 7 way polyglot ELF, x86 Bootloader, COM, RAR,
ZIP, GNU Multiboot2 image, and Commodore 64
program in 512 bytes.

https://xcellerator.github.io/posts/bggp21/

See a detailed breakdown in PoC||GTFO 22:11

https://www.alchemistowl.org/pocorgtfo/pocorg
tfo22.pdf

LKM Golf (2023)

Linux Kernel Modules are stored in the
ELF format.

We (rqu & I) uncovered the essence of
the LKM, the `this_module` struct

https://tmpout.sh/3/19.html

LKM Golf (2023)

One of the reasons LKMs aren't portable is
because they must be built for the specific
kernel version that it intends to run on.

The fields in `this_module` may change or
have different requirements depending on
kernel version.

https://tmpout.sh/3/19.html

0xFFtactics.asm

Created this ELF64 with every field
maxed out. It returns “6” when run.

Try it out on your favorite tools to see
what happens!!

https://tmpout.sh/2/11.html

All the places you can store data in tiny ELF64 headers

Fun Stuff

Endianness Bug

This is a simple bug affects many things.

Changing the ei_data field swaps the endianness,
which causes many parsers to break.

The kernel doesn’t care about this field because
e_machine is the source of truth for architecture.

https://tmpout.sh/2/3.html

Endianness Bug: readelf / binutils

Endianness Bug: Anti-Analysis Tricks

Unmodified Wrong ei_data value

Homework: Bypass VirusTotal Detections

Take some known ELF malware with lots of
signatures, and change the ei_data field to
the opposite endianness.

See how many detections the binary gets
before and after. :)

What other header field modifications fool
the detection engines?

Pictured: Totally real VirusTotal Scanner

LELF Bug

In both radare2 and rizin, changing the first byte of
any ELF file to an “L” would trigger the Linear
Executable parser instead of the ELF parser. This
triggered a very long loop which DOS’d both
programs until they ran out of memory.

This was found during BGGP3

https://n0.lol/lemonade/

LELF Memory Corruption

Tested older versions of the parser

The radare2 4.2.1 LE parser had similar
logic, but the section mapping while
iterating over headers didn’t have
enough checks

Led to out of bounds reads and writes
until it crashed

The patch was pushed a day after this
version was released

Just For Fun - Putting Art In Dynamic Sections

Just like changing PT_NOTE to PT_LOAD, other structures can be modified to
include additional data

vn_file is a pointer to a string that is the name of a needed libc version

Just For Fun - Putting Art In Dynamic Sections

ELF64 Palindrome

For BGGP1

Executes code in reverse

Brute forced all the short
jumps for x86_64

https://www.alchemistowl.or
g/pocorgtfo/pocorgtfo21.pdf

Conclusion

PLAY BGGP6!!

BGGP6 runs from Oct. 18 2025 to Jan. 18 2026

All previous challenges are open this year!

Take what you’ve learned here and create
something even weirder

https://binary.golf/6

Q & A

???

Resources from this talk are at https://github.com/netspooky/golfclub

Email: u@n0.lol

Twitter: netspooky

Bsky: @vacci.ne

Mastodon: @netspooky@haunted.computer

https://binary.golf

