
Binary Fun Week!
Boot loaders / bug hunting / attack surface auditing / 

examples of vulnerabilities / and more



whoami

- Joseph Tartaro
- 14 years at IOActive
- Oracle



Agenda

- Security
- Why?

 

- “Boot Loaders”
- Why?
- Common boot loaders
- Supported features

 

- Attack Surface Analysis
- Examples of bugs



Security

- Why?
- Software is everywhere cars, hospitals, infrastructure…

- Security mindset helps developers
- Avoid undefined behavior
- Write safer interfaces and validation layers
- Improve robustness

- Crashes and logic flaws often share the same root cause









Security Mindset

- Trust No One.
- User Attacker input.

Developer Mindset Security Mindset

“How do I make this work?” “How could this break?”

“User input will follow protocol” “User input is adversarial.”

Focuses on expected paths Focuses on edge cases

Concerned with it working Concerned with it failing safely



“Boot Loaders”

- I’ll be using a wide interpretation of “boot loader”... meaning “stuff in your boot 
chain”
 

- Code will call into BIOS/UEFI support routines
- Similar to userland calling into kernel
- SMM (System Management Mode) / TrustZone

 

- Similar to how an OS kernel should question everything and validate all 
attacker controlled data



Why?

- Boot loaders are a critical foundation of your devices security
- They are a key component in the chain of trust
- Everything that is loaded by them relies on the boot loaders integrity to uphold security 

guarantees
 

- Some secure device designers are poor at hardening and limited attack 
surface.
 

- Some designers underestimate Reverse Engineering (RE) and/or assume no 
bad actors in certain components.



Where?

- Everywhere!
- Servers
- Desktops / Workstations
- Phones
- Tablets
- Entertainment Devices
- Embedded Devices
- …

 

- Often some dependency on a secure boot loader



Standing on the shoulders of giants

Conversations, papers, ideas, books, presentations, code… with/from these people inspired and 
directory or indirectly contributed to the content here…

- Ilja van Sprundel
- Daniel Hodson
- Enrique Nissim
- Rodrigo Branco
- Vincent Zimmer
- Victor Tan
- Felix Domke
- Mathias Eissler
- Peter Baer
- Folks from legbacore
- Alex Matrosov
- …



Common Boot Loaders

- These are publicly available open source and free software
 

- These are used in many real world scenarios
- Often heavily customized though..

- Hooks for secure boot
- Drivers that aren’t publicly available
- HW specific changes

 

- What we’ll cover to some extent:
- Das U-Boot
- Coreboot
- Grub
- Seabios
- CFE
- iPXE
- TianoCore (UEFI)



Das U-Boot

- Boot loader that supports many boards and CPUs
- Can configure your own board and/or CPU

 

- Offers a very customizable boot environment
- Hundreds of defines you can set or not in your board config
- Can set a bunch of default env vars you rely on

 

- Has a powerful shell
- Many of the commands have dependencies on env vars
- Offsers API (run_command()) to run shell command, used by many configs

 

- Lots of drivers for various devices



Das U-Boot

- Feature Supports
- Network (DHCP, ARP, DNS…)
- File Systems (FAT, Reiser, JFFS2)
- Loads various next stage images (Serial, Ethernet, Hard Drisk, CD-ROM, CompactFlash, 

USB, SCSI, NAND, Disk on Chip, PCI…)

- Used by *many* embedded devices



Coreboot

- Targeted at modern OS’
- Does not support BIOS calls
- Used to boot iPXE, gPXE, Etherboot, SeaBios… instead of implementing it’s own features

- Used in chromebooks
 

- Interesting bits in Coreboot come from Google
 

- Contains System Management Mode (SMM)



Grub

- Common boot loader for linux
 

- Primary concern is Multiboot specification
 

- Filesystems
- Amiga Fast File System (AFFS), AtheOS fs, BeFS, BtrFS, cpio, Linux ext2/ext3/ext4, DOS 

FAT12/FAT16/FAT32, exFAT, F2FS, HFS, HFS+, ISO9660, JFS, Minix fs, nilfs2, NTFS, 
ReiserFS, ROMFS, Amiga Smart FileSystem (SFS), Squash4, tar, UDF, BSD UFS/UFS2, XFS 
and ZFS
 

- There are UEFI signed version of Grub



Seabios

- Default BIOS for QEMU and KVM
 

- Supports BIOS calls, so it’s commonly loaded by Coreboot or other boot 
loaders.
 

- Supports TPM
 

- Compatibility Support Module (CSM) for Unified Extensible Firmware 
Interface (UEFI) and Open Virtual Machine Firmware (OVMF)



CFE

- Broadcom boot loader
 

- Used in a bunch of wireless routers and home entertainment platforms
- Appl Airport, Asus routers, Buffalo AirStation, Linksys WRT54G series, Netgear, LG, Samsung 

TVs, etc
 

- Network (DHCP, TFTP, DNS, ARP, …)



iPXE

- Open source PXE boot loader
- Emphasis on network options
- Can retrieve data over many protocols
- Supports 802.11, FCoE, AOE,…

 

- Has UEFI signed versions



TianoCore

- Needs no introduction
- Loads of documentation and specs
- Dozens of security presentations regarding UEFI over the past 15 years or so…

 

- By far the most scrutinized and attacks
- As a result, it’s pretty mature compared to its alternatives

 

- Several implementations on top of it, such as Qualcomm’s ABL, XBl…
 

- Platform specific stuff built on top



Related to boot loaders

- TrustZone OS
- Optee_OS
- NVIDIA trust little kernel
- Trusty (Android)
- Arm-trusted-firmware

 

- Reference implementation for secure world by ARM
- Can be used by the Operating Systems mentioned above

 

- Host OS (e.g. Linux)
- Could be anything. Often Linux and will focus on linux for this content



Secure Boot

- Root/Chain of Trust
- Bootrom
- 1st, 2nd and 3rd stage loader
- Measured boot
- Trusted boot

- TPM involvement
- TrustZone involvement
- Host OS booting and interaction



Root of Trust

- Start with bootrom (1st stage)
- Read only memory that can’t be patched

- Would require HW revision
 

- Memory size constrained
- Does ‘bare minimum’
- Initializes some hardware

- DRAM
- IOMMU
- …

- Might implement fastboot (e.g. has USB stack)
- Hands of to the next stage

- Read next stage from storage (e.g. flash, ssd, hdd)
- Verify it’s valid (signature checking) [trusted boot]
- Might measure boot at various stages in cooperation with TPM [measured boot]
- Run after verification succeeds



Chain of Trust

- Bootloader (2nd stage, optionally 3rd stange, … Nth stage)
- Starts where bootrom left off
- Implement features needed by device:

- Network / WiFi stack
- SMM handlers
- Environment variables

- Can hand off to next stage boot loaders
- Will / should verify at each handoff stage before executing [trusted boot]
- Might optionally measure at various points [measured boot]



Chain of Trust

- Some HW environments might offer more than 1 runtime environment
- Secure World / Normal World

- Arm: TrustZone
- Windows: VTL0/VTL1, enforced by hypervisor

- Boot loader would hand off to TrustZone/HV boot code to set this up
- Reads from storage
- Verifies before running
- Optionally measures
- Hand off to next stage after verification



Chain of Trust

- Eventually loads OS
- Read OS image/kernel from storage
- Verify image/kernel before running
- Optionally measure at various points
- Hand off to OS Kernel

- Might pass parameters along to OS Kernel
- Some parameters might be influenced by NVRAM/ENV variables



Attack Surface

- NVRAM
 

- Files and File Systems
 

- Networking (TCP/IP, Bluetooth, 802.11, …)
 

- Various Busses (USB, SPI, I2C, SDIO, …)
 

- SMM
 

- Hardware



Attack Surace: NVRAM

- Environment Variables
 

- Can be modified from OS Runtime and effect configuration of the next boot 
sequence
 

- Standard parsing of us controlled data concerns



Attack Surface: NVRAM

Functions of interest when looking at attack surface:

- env_get() – U-boot
- getenv() – Coreboot
- env_getenv() – CFE
- GetEnv() – TianoCore



U-Boot



















Attack Surface: Filesystems

- FS mounting
 

- Often FS itself is not signed / integrity protected
 

- E.g. FAT FS on a USB device
 

- Prime attack surface



Attack Surface: Files

- Files inside the file system
 

- Depending on software some/most/all are not integrity protected
 

- File parsers should be considered attack surface
- E.g. use AFL to fuzz file parsers



Example: Filesystem/Files

- Ext2
- Grub
- Reading symlinks

 

- Drivers
 

- Binaries
 

- Partition Tables
 

- Malicious Capsule Updates
 

- BMP Splash Images



Grub



TianoCore



Attack Surface: TCP/IP

- Whole TCP/IP network stack
 

- Talk to Services
- BOOTP/DHCP
- DNS
- Network Filesystem (ISCSI, NFS)
- IPSec
- HTTP(S)
- TFTP



Attack Surface: TCP/IP

- TCP/IP TLV Parsing
- DoS’ are plenty

 

- DNS & DHCP
- Cache poisoning and lease stealing
- Static ID, no ID validation, predictable ID

 

- Memory corruption bugs
 

- Information leaks
- Leak uninitialized data over network… think heartbleed

 

- Use network stack fuzzers
- E.g. isic



U-Boot



CFE



CFE



CFE



CFE



Attack Surface: 802.11

- Some parse mostly on radio and then tell host
 

- Some are mostly pass-through and send directly to host
 

- Only a handful of bootloaders support 802.11
- At the present time?

 

- Accidental vs. Purposeful attack surface reduction



iPXE



Attack Surface: Bluetooth

- Often the same radio as 802.11, from the same manufacturer
 

- Surprisingly few boot environments seem to support Bluetooth
- HID: keyboard and mouse

 

- Network protocol parsing
- Large frames (~65k) might cause issues
- Very short frames might cause issues
- Fragmentation games



Attack Surface: USB

- USB devices
- Storage (e.g. filesystems)
- Ethernet dongles

 

- Descriptor parsing is often wrong
- Straight up overflows
- Descriptor double fetches

 

- Protocols like Fastboot, etc.



Grub



TianoCore



TianoCore



Seabios



Nvidia Tegra Vulnerability (Nintendo Switch)
https://fail0verflow.com/blog/2018/shofel2/
https://github.com/Qyriad/fusee-launcher/blob/master/report/fusee_gelee.md 

https://fail0verflow.com/blog/2018/shofel2/
https://github.com/Qyriad/fusee-launcher/blob/master/report/fusee_gelee.md


iPhone Checkm8 vulnerability

https://habr.com/en/company/dsec/blog/472762/

https://habr.com/en/company/dsec/blog/472762/


Attack Surface: SPI/SDIO/I2C

- Flash is often connected over SPI
 

- Not intended to be used by end user, so developers mistake it as trusted. IT 
IS NOT.
 

- This includes the TPM!



Seabios



Attack Surface: SMM

- System Management Mode (ring - 2)
- Entire presentations on SMM and security
- Doing SMM right is HARD.

 

- UEFI does pretty well these days
- edkII
- 3rd party stuff has occasional issues

 

- Re-implementing from scratch is HARD
- You’ll probably get it wrong the first couple of tries



Coreboot



Hardware

- This can mean a lot of things
 

- Glitching attacks
- Side Channel
- Chipsec (silicon)



Hardware: Glitching

- Fault Injection
- Clock
- Voltage
- Laser
- Coil

 

- Common scenario: glitching code integrity checking
 

- Modern examples: breaking nRF52



Hardware: Side Channel

- Timing discrepancies
- Power consumption discrepancies
- CPU bugs

- Spectre & meltdown
 

- Leak secrets



Hardware: Chipsec

- Decapping, FIB, SEM, …
- Very sophisticated attacker
- Optical ROM Extraction

- Beginning of the Chain of Trust!



A note on code integrity

- Doing code integrity right is hard
 

- Some things we’ve seen go wrong
- Weak crypto/algo
- Blacklist problems

- List exhausted
- Fail open/closed in case of failure (e.g. OOM)
- Known bad but not in blacklist (blacklist update fail)

- E.g. signed grub with known bug for UEFI (Kaspersky)
 

- Some sections in exec file not signed
 

- Checking if signatures exist but not verifying them



Conclusions

- We’ve just covered the tip of the iceberg
 

- Surprising amount of low quality code
- Strcpy / sprintf type of bugs

 

- You get to NDA hell pretty quickly once you start digging around
- All of the proprietary stuff…



Advice / Mitigations

- Minimize image, both boot environment and host OS.
 

- Turn off features you don’t need
- Net
- USB
- File Systems
- ENV
- Anything you don’t explicitly need. It could have attack surface.

 

- Need more people reviewing bootloaders
- Fuzz interfaces! (net, bus, file, fs, …)
- Static analysis
- Periodic reviews



Contact Info

joseph.tartaro@gmail.com

@droogie1xp

mailto:joseph.tartaro@gmail.com

	Binary Fun Week!
	whoami
	Agenda
	Security
	Slide 5
	Slide 6
	Slide 7
	Security Mindset
	“Boot Loaders”
	Why?
	Where?
	Standing on the shoulders of giants
	Common Boot Loaders
	Das U-Boot
	Das U-Boot (2)
	Coreboot
	Grub
	Seabios
	CFE
	iPXE
	TianoCore
	Related to boot loaders
	Secure Boot
	Root of Trust
	Chain of Trust
	Chain of Trust (2)
	Chain of Trust (3)
	Attack Surface
	Attack Surace: NVRAM
	Attack Surface: NVRAM
	U-Boot
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Attack Surface: Filesystems
	Attack Surface: Files
	Example: Filesystem/Files
	Slide 43
	Slide 44
	Attack Surface: TCP/IP
	Attack Surface: TCP/IP (2)
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Attack Surface: 802.11
	Slide 53
	Attack Surface: Bluetooth
	Attack Surface: USB
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Attack Surface: SPI/SDIO/I2C
	Slide 63
	Attack Surface: SMM
	Slide 65
	Hardware
	Hardware: Glitching
	Hardware: Side Channel
	Hardware: Chipsec
	A note on code integrity
	Conclusions
	Advice / Mitigations
	Contact Info

