

Compiler Internals
For Security Engineers

Marion Marschalek
pinkflawd@gmail.com

What security relevant aspects do
compilers provide?

● Mitigations

● Optimizations

● Obfuscation

● Analysis

● Instrumentation

● Intermediate representations to no end

How are ELFs made?

Source → Compiler → Assembler → Linker → Loader

● Compiler: GCC, LLVM/Clang, Intel Compiler, VisualStudio Compiler, and so
many more!

● Assembler: Converts assembly language (text) to machine readable code,
produces object files

● Linker: Combines one or more objects to create executable, resolves
external references and symbols

● Loader: Loads executable and maps it to process memory space, then
executes it

The GCC Compiler
A 1 Mio. Foot View!

The Debug Output

… is worth gold, and looks a bit like a “Matrix” screensaver
when you scroll down fast

-fdump-passes
-fdump-tree-all, -fdump-ipa-all, -fdump-rtl-all
-fdump-tree-cfg-all
-fdump-rtl-MYAWESOMEPLUGIN

GCC Plugins
Since GCC 4.5 we can plug passes into the compilation process!
Benefits of plugins vs. modifying GCC itself?

₋ Plugins are shared objects, loaded by GCC as dedicated
passes

₋ Maintained by pass manager
₋ Dependent on compiler version
₋ GCC plugin API defined in tree-pass.h

https://lwn.net/Articles/457543/

GCC Representations
and Data Structures

GENERIC or
the mystic TREE

Nodes

Types

Values

The mystic TREE

GENERIC
₋ Language-independent way of representing an entire

function as trees
₋ Interface between parser and optimizers
₋ Superset of Gimple: imagine a language with a tree

structure, similar to LISP
₋ Defined in gcc/tree.def

Important concepts:
Tree types and DECLs, expressions and statements

GIMPLE – A tree based
representation

The three address code
Target- and language independent optimization

Calculate one solution to the [[quadratic
equation]].
x = (-b + sqrt(b^2 - 4*a*c)) / (2*a)

t1 := b * b
t2 := 4 * a
t3 := t2 * c
t4 := t1 - t3
t5 := sqrt(t4)
t6 := 0 - b
t7 := t5 + t6
t8 := 2 * a
t9 := t7 / t8
x := t9

https://en.wikipedia.org/wiki/Three-address_code

GIMPLE

GIMPLE

C

GIMPLE in code
Instruction set and language structure much like any high level
programming language

GIMPLE_ASSIGN, GIMPLE_CALL, GIMPLE_RETURN, etc.

GIMPLE_PHI, GIMPLE_ASM, etc.

Iterators & statement modifiers

Closely tied to TREE

Go-to tool for CFG and Tree SSA optimizers in GCC middle end

GIMPLE in code
Iterator

Searching CALL statement

Building an
argument

Modification

Register Transfer Language

RTL
RTL passes “implement” the machine definition
machine definition reflects the processor ABI
target dependent optimization
register allocation
machine code generation
rtl.def, rtl.h, <machine>.md
emit-rtl.h

“Assembly language for an
abstract machine with infinite

registers”

Instructions to be generated are
described in an algebraic form

that describes what the
instruction does

The beauty lies within :)
[...]
(insn 5 2 6 2

(set (reg:DI 5 di)
(symbol_ref/f:DI ("*.LC0") [flags 0x2] <var_decl 0x7fd4f1a1ecf0 *.LC0>))

"helloworld.c":4 -1
(nil))

(call_insn 6 5 7 2 (set (reg:SI 0 ax)
(call (mem:QI (symbol_ref:DI ("puts") [flags 0x41]
 <function_decl 0x7fd4f1974600 __builtin_puts>) [0 __builtin_puts S1 A8])
 (const_int 0 [0]))) "helloworld.c":4 -1
(nil)
(expr_list:DI (use (reg:DI 5 di))

(nil)))
[...]

// lea scratchReg, [memLocation + offset]

mySymbol= gen_rtx_SYMBOL_REF(Pmode, memLocation);

SYMBOL_REF_FLAGS(mySymbol) |= SYMBOL_FLAG_LOCAL;

leaInstruction = gen_rtx_SET(scratchReg, plus_constant(Pmode, mySymbol, offset));

emit_insn_before(leaInstruction, positionInsn);

// push variable (64 bit)

decrementStackP = gen_rtx_PRE_DEC(DImode, stack_pointer_rtx);

topOfStack = gen_rtx_MEM(DImode, decrementStackP);

pushInstruction = gen_rtx_SET(topOfStack, variable);

emit_insn_before(pushInstruction, positionInsn);

// mov scratchReg, sourceReg

movInstruction = gen_rtx_SET(scratchReg, sourceReg);

How do we
generate

RTL within
GCC?

// call <location>

myInternalLabel = gen_label_rtx();
LABEL_NUSES(myInternalLabel)++;
ASM_GENERATE_INTERNAL_LABEL(LNAME, "L",
CODE_LABEL_NUMBER(myInternalLabel));

mySymbol = gen_rtx_SYMBOL_REF(Pmode, LNAME);
callInstruction = gen_rtx_CALL(Pmode, gen_rtx_MEM(FUNCTION_MODE,
mySymbol), const0_rtx);
emit_call_insn_before(callInstruction, insn);

[...]
emit_label_before(myInternalLabel, insnAtLocation);

Machine Definitions
<machine>.md

Machine Definitions
<machine>.md
Main part of a gcc backend to be found in gcc/config/<machine>

i386.md

i386.opt

i386-modes.def

i386-protos.h

i386.c and i386.h

IPA – Inter-Procedural Analysis
₋ IPA passes operate on the call graph and

 the varpool, inter-procedurally
₋ IPA_PASS and SIMPLE_IPA_PASS
₋ IPA LTO: stages partially run at compile

time or at link time
₋ Go-to tools are essentially GIMPLE and

GENERIC

generate_summary
write_summary
read_summary

execute
write_optimization_summary
read_optimization_summary

function_transform
variable_transform

But Security!!1!

Compiler Optimizations

… and what they have to do with security.

Undefined Behavior
● There is a bounds check in the source, which got optimized away in

the binary

● Ivan Fratric: “Why on earth would the compiler remove a bounds
check?”

– Bounds check returns nullptr

– Calling function doesn’t check for nullptr, so if check fails that
results in null pointer dereferentiation

– Compiler knows that null pointer deref is undefined behavior;
undefined behavior greenlights compiler to take remediative
action, and compiler decided to remove the check entirely

Are there other such unicorns?
● OpenSSL "Memset Removal" Bug (CVE-2008-1196)

– Cryptographic material wasn’t properly removed from memory after use since compiler thought
operation was obsolete since the data wasn’t used after memset

● Clang/LLVM Stack Protector Misoptimization (CVE-2020-10771)
– Clang removed stack protectors under certain conditions, eg. with tail calls

● Mozilla’s ARM64 Ion compiler in Firefox (CVE‑2023‑29548)
– Wrong lowering (compiling from higher‑level IR to lower level) of unsigned division when divisor is

negation of power of two. The optimization incorrectly used absolute value logic

● Mbed TLS (versions prior to 3.6.4) (CVE‑2025‑52496)
– Compiler removed security critical code due to a race condition in AESNI detection when certain

compiler optimizations are applied, attackers can extract cryptographic keys or forge messages

Compiler Mitigations

● Stack Protectors

– Canaries, Safe Stack, Shadow Stack, etc.

● Control Flow Integrity (CFI)

● CPU side channel mitigations

● Address Space Layout Randomization support (ASLR) through
position independent code (PIC/PIE)

● And many others...

Spectre v2: Branch Target Injection

● Abuses indirect branch prediction, speculative execution and
cache timing side-channels

● Tricks the CPU into speculatively executing memory it
wouldn’t have executed otherwise, by poisoning indirect
branch prediction

● If speculative execution leaves state behind in cache that
state can be inferred using cache inference attacks

● This allows attackers to read privileged memory

https://googleprojectzero.blogspot.com/2018/01/reading-privileged-memory-with-side.html

Spectre v2: Retpoline

https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/retpoline-branch-target-injection-mitigation.html

Retpoline in GCC
Memory thunk where the function address is
at the top of the stack:

Register thunk where the function address is in a
register, reg:

https://github.com/gcc-mirror/gcc/commit/
da99fd4a3ca06b43b08ba8d96dab84e83ac90aa7#diff-806048569684df6eeab0a325b82fdd48edf5314368e8e4518c7
522a5c358fe63

Software Protections
● Source level (Developer)
● IR-level (Compiler)
● Machine code / post link stage (aka. Runtime

packers)

Compiler Based Protections
● Control flow flattening
● Basic block splitting / reordering
● Bogus control flow / instructions

– Opaque branches, bloat code, etc.
● String encryption, constant encryption
● Replace simple arithmetic with complex operations
● Breakpoint / hook / debugger detections
● Function inlining/outlining
● Instruction substitution
● SO MUCH MORE

Why Obfuscation Matters

Thank you
Marion Marschalek
pinkflawd@gmail.com

Resources
https://code.woboq.org/gcc/gcc/
https://gcc.gnu.org/onlinedocs/gccint/index.html
https://github.com/enferex/sataniccanary/
https://github.com/ephox-gcc-plugins
https://medium.com/@prathamesh1615/adding-peephole-optimization-to-gcc-89c329dd27b3
https://www.airs.com/dnovillo/200711-GCC-Internals/200711-GCC-Internals-7-passes.pdf
https://www.mitre.org/sites/default/files/publications/supply-chain-attack-framework-14-0228.pdf
https://lwn.net/Articles/457543/
https://www.cse.iitb.ac.in/grc/slides/cgotut-gcc/topic8-retarg-mode.pdf
https://www.cse.iitb.ac.in/~uday/courses/cs715-09/gcc-rtl.pdf
https://en.wikibooks.org/wiki/GNU_C_Compiler_Internals/GNU_C_Compiler_Architecture
https://codesynthesis.com/~boris/blog/2010/05/03/parsing-cxx-with-gcc-plugin-part-1/
https://kristerw.blogspot.com/2017/08/writing-gcc-backend_4.html
https://www.usenix.org/sites/default/files/conference/protected-files/kemerlis_usenixsecurity12_slides.pdf
ftp://gcc.gnu.org/pub/gcc/summit/2003/GENERIC%20and%20GIMPLE.pdf
https://pdfs.semanticscholar.org/cafc/c15a1602c5a8090606333b3bdb42e9e80654.pdf
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/spec
ulative-execution-side-channel-mitigations.html
https://www.youtube.com/watch?v=U1kc7fcF5Ao

https://medium.com/@prathamesh1615/adding-peephole-optimization-to-gcc-89c329dd27b3
https://medium.com/@prathamesh1615/adding-peephole-optimization-to-gcc-89c329dd27b3
https://medium.com/@prathamesh1615/adding-peephole-optimization-to-gcc-89c329dd27b3
https://medium.com/@prathamesh1615/adding-peephole-optimization-to-gcc-89c329dd27b3
https://medium.com/@prathamesh1615/adding-peephole-optimization-to-gcc-89c329dd27b3
https://medium.com/@prathamesh1615/adding-peephole-optimization-to-gcc-89c329dd27b3
https://medium.com/@prathamesh1615/adding-peephole-optimization-to-gcc-89c329dd27b3
https://medium.com/@prathamesh1615/adding-peephole-optimization-to-gcc-89c329dd27b3
https://medium.com/@prathamesh1615/adding-peephole-optimization-to-gcc-89c329dd27b3
https://medium.com/@prathamesh1615/adding-peephole-optimization-to-gcc-89c329dd27b3
https://www.airs.com/dnovillo/200711-GCC-Internals/200711-GCC-Internals-7-passes.pdf
https://www.airs.com/dnovillo/200711-GCC-Internals/200711-GCC-Internals-7-passes.pdf
https://www.mitre.org/sites/default/files/publications/supply-chain-attack-framework-14-0228.pdf
https://www.mitre.org/sites/default/files/publications/supply-chain-attack-framework-14-0228.pdf
https://lwn.net/Articles/457543/
https://lwn.net/Articles/457543/
https://www.cse.iitb.ac.in/grc/slides/cgotut-gcc/topic8-retarg-mode.pdf
https://www.cse.iitb.ac.in/grc/slides/cgotut-gcc/topic8-retarg-mode.pdf
https://www.cse.iitb.ac.in/~uday/courses/cs715-09/gcc-rtl.pdf
https://www.cse.iitb.ac.in/~uday/courses/cs715-09/gcc-rtl.pdf
https://en.wikibooks.org/wiki/GNU_C_Compiler_Internals/GNU_C_Compiler_Architecture
https://en.wikibooks.org/wiki/GNU_C_Compiler_Internals/GNU_C_Compiler_Architecture
https://codesynthesis.com/~boris/blog/2010/05/03/parsing-cxx-with-gcc-plugin-part-1/
https://codesynthesis.com/~boris/blog/2010/05/03/parsing-cxx-with-gcc-plugin-part-1/
https://kristerw.blogspot.com/2017/08/writing-gcc-backend_4.html
https://kristerw.blogspot.com/2017/08/writing-gcc-backend_4.html
https://www.usenix.org/sites/default/files/conference/protected-files/kemerlis_usenixsecurity12_slides.pdf
https://www.usenix.org/sites/default/files/conference/protected-files/kemerlis_usenixsecurity12_slides.pdf
GCC_Research/Presentations/NULL
GCC_Research/Presentations/NULL
https://pdfs.semanticscholar.org/cafc/c15a1602c5a8090606333b3bdb42e9e80654.pdf
https://pdfs.semanticscholar.org/cafc/c15a1602c5a8090606333b3bdb42e9e80654.pdf
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/speculative-execution-side-channel-mitigations.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/speculative-execution-side-channel-mitigations.html

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Every presentation any researcher has ever done on GCC things s
	The Debug Output
	GCC Plugins
	Stages of the compiler and what they mean for plugin writers
	GENERIC or the mystic TREE
	The mystic TREE
	GENERIC
	GIMPLE – A tree based representation
	GIMPLE
	GIMPLE (2)
	GIMPLE from a plugin perspective
	GIMPLE from a plugin perspective (2)
	RTL – Register Transfer Language
	RTL – Register Transfer Language (2)
	The beauty lies within ;)
	Slide 20
	Slide 21
	Machine Definitions <machine>.md
	Machine Definitions <machine>.md (2)
	IPA – Inter-Procedural Analysis
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Resources

