
Assignment 1

CS59

October 7, 2024

This assigment will help make you more proficient with the Arm assembler and debugging.

You have been given a program called “f00xxxx a1”, where “xxxx” is replaced by your

student number. It should be in your home directory under

CS59/VirtualMachine/VM Shared Directory

on thepond. This will allow you to access the file through the QEMU virtual machine

under the /mnt directory. If you didn’t get an executable, let Pete Brady know as soon as

possible.

To start the virtual machine, run the launch vm.sh script in CS59/VirtualMachine.

This will start the Alpine Linux session in your terminal window. The login is root with no

password. To shut down the virtual machine when you’re done, use the poweroff command.

Your program is very straightforward; execute the program, enter the correct code on

the command line and a token will be returned to you. If you type in an incorrect code, the

program exits. The code is an encrypted version of the plaintext “hello world”.

1

For example, we’ll use a sample program that is similar to yours (each program has

slightly different variables), so you can either type the encryption code after the program

starts:

aarch64−a lp ine−vw:˜# cd /mnt

aarch64−a lp ine−vw:/mnt# ./ f002w4q a1

Enter the input : h e l l o wo r l d

I n c o r r e c t input .

Or you can echo the input into the program:

aarch64−a lp ine−vw:/mnt# echo ” he l l o wo r l d ” | . / f002w4q a1

Enter the input : I n c o r r e c t input .

Once you use the debugger to figure out how the program works, you can enter the correct

input to get a token out:

aarch64−a lp ine−vw:/mnt# ./ f002w4q a1

Enter the input : <input>

Your token i s : <token>

aarch64−a lp ine−vw:/mnt#

Use the lldb debugger to explore how the encryption algorithm works, which will help

you solve the problem. Once you figure that out, you should be able to enter the encrypted

value and get your token. For example:

aarch64−a lp ine−vw:/mnt# l l db . / f002w4q a1

(l l db) t a r g e t c r e a t e ” . / f002w4q a1”

Current executab l e s e t to ’ /mnt/ f002w4q a1 ’ (aarch64) .

(l l db) b main

Breakpoint 1 : where = f002w4q a1 ‘ main , address = 0x0000000000000a08

(l l db) r

Process 2477 launched : ’ /mnt/ f002w4q a1 ’ (aarch64)

Process 2477 stopped

∗ thread #1, name = ’ f002w4q a1 ’ , stop reason = breakpoint 1 .1

frame #0: 0x0000aaaaaaaa0a08 f002w4q a1 ‘ main

2

f002w4q a1 ‘ main :

−> 0xaaaaaaaa0a08 <+0>: sub sp , sp , #0xc0

0xaaaaaaaa0a0c <+4>: s tp x29 , x30 , [sp , #0xa0]

0xaaaaaaaa0a10 <+8>: add x29 , sp , #0xa0

0xaaaaaaaa0a14 <+12>: s tp x19 , x20 , [sp , #0xb0]

(l l db) d i s

f002w4q a1 ‘ main :

−> 0xaaaaaaaa0a08 <+0>: sub sp , sp , #0xc0

0xaaaaaaaa0a0c <+4>: s tp x29 , x30 , [sp , #0xa0]

0xaaaaaaaa0a10 <+8>: add x29 , sp , #0xa0

0xaaaaaaaa0a14 <+12>: s tp x19 , x20 , [sp , #0xb0]

0xaaaaaaaa0a18 <+16>: adrp x0 , 31

0xaaaaaaaa0a1c <+20>: l d r x0 , [x0 , #0xfb8]

This shows loading the program with lldb, setting a breakpoint at main, running the

program, getting a breakpoint, then printing out the disassembled code at that point.

Completing the Assignment

You will need to turn in the following:

1. Explain the encryption method that was used in your program.

2. Explain the method you used to arrive at that conclusion. There are several different

methods you can use to solve this problem.

3. Provide the encrypted token that the program returned and the plaintext of that token.

The assignment is due by Monday October 14th.

3

