
Homework 3: Haskell Functor / Applicative

Programming Languages (Fall 2024)

Due: Same as Final Project

This homework will explore some Haskell ideas such as Monads, Fuctors, and Applicative within the
context of Parsing.

Deliverables: Submit one file “∼/CS59/hw3.hs” on the pond which contains the necessary functions. In
particular, you must define:

{- Part 1 -}

term :: Char -> Parser Char

digit :: Parser Char

singularWhiteSpace :: Parser Char

endOfStream :: Parser ()

{- Part 2 -}

fmap :: (a1 -> a2) -> Parser a1 -> Parser a2

{- Part 3 -}

<*> :: Parser (a1 -> a2) -> Parser a1 -> Parser a2

<|> :: Parser a -> Parser a -> Parser a

{- Part 4 -}

greedyPlus :: Parser a -> Parser [a]

integer :: Parser Int

whiteSpace :: Parser ()

{- Part 5 -}

intCalculator :: Parser Int

Note: You can install ghc on the pond using ghcup without root. Just run:

curl --proto ’=https’ --tlsv1.2 -sSf https://get-ghcup.haskell.org | sh

Also Note: This is an extra credit assignment, but also highly encouraged!!

1

Part 1: A Basic Parser

Parsing is fundamentally just a way of interpreting input. A parser will take in some sequence of raw data
(usually binary data in the form of bytes, but sometimes different forms of representation such as bits or text
are more natural) and output some type of structure which is the parse tree of the object. For this exercise
we will define the parsing operation on a string – So a parser is simply an object which can interpret a string
and create some structure leaving a suffix of the string un-parsed. Of course a parser can also fail to parse
the input (trying to interpret “abc” as an integer probably doesn’t make a lot of sense, or, at least, likely
you’d prefer that to fail than give you some unexpected result). This gives us a natural type definition:

newtype Parser a = Parser {

parse :: String -> Maybe (a, String)

}

And then we can make some basic parsers!! Probably the simplest form of parser takes some character
predicate (that is something which returns true or false depending on the character) and parses one character
off of the string according to that predicate.

satisfy :: (Char -> Bool) -> Parser Char

satisfy pred = Parser f where

f [] = Nothing

f (x:xs)

| pred x = Just (x, xs)

| otherwise = Nothing

And we can test that this does what we expect:

parse (satisfy (== 'x')) "xyz" -- Returns: Just ('x',"yz")

parse (satisfy (== '3')) "123" -- Returns: Nothing

parse (satisfy (\c -> True)) "" -- Returns: Nothing

Construct the following basic parsers (these should be relatively straightforward given the above exam-
ples!)

1. Write a constructor for a parser: term1, which takes a Char and returns a Parser Char which will
successfully parse the first character of the input if it is the character in question and will fail otherwise.

2. Write a constructor for a parser: digit which will parse one digit (0− 9) from the input.

3. Write a constructor for a parser singularWhiteSpace which will parse a whitespace character (consider
only the four whitespace characters: space, tab, carriage return, and linefeed) from the input.

4. Write a constructor for a parser endOfStream: which succeeds if the string is empty and fails otherwise.

parse (term 'a') "abc" -- Just ('a',"bc")

parse (term 'b') "abc" -- Nothing

parse digit "a23" -- Nothing

parse digit "4s2" -- Just ('4',"s2")

parse digit "" -- Nothing

parse singularWhiteSpace " A" -- Just (' ',"A")

parse singularWhiteSpace "\nB" -- Just ('\n',"B")

parse singularWhiteSpace "cat" -- Nothing

parse endOfStream "" -- Just ((),"")

parse endOfStream "a" -- Nothing

1term is short for “Terminal” which is the terminonigy used in parsing for a non-recursive singular-character construct. This
is to say a parsing expression which will terminate consuming one symbol (usually character / byte) and without relying on the
result of another parsing expression

2

Part 2: Parser as a Functor

Now, we made a deliberate choice above to only return a Char from each of the functions. But it is conceivable
you would want to return something else from the parse. For instance we might want digit to return an
Int instead of a Char. While we could build a wrapper which first uses digit to parse the input and then
converts whatever character was parsed into an int, this is a highly specialized operation and we would prefer
something more general. Namely, given a function of type a -> b we would like to be able to transform a
parser which parses type a and construct a parser which parses type b. But wait!! This is just fmap! Let’s
define an fmap for Parsers:

instance Functor Parser where

fmap = {- write function here! -}

While we can write fmap as some other function, making Parser a Functor comes with certain advantages.
In particular, it means that you get to use some of Haskell’s syntactic sugar (You might need to import
Control.Applicative for <$> to be interpreted as fmap)!

-- Instead of writing:

fmap func parser

-- We instead write:

func <$> parser

This is particularly useful for associativeity of fmap:

fmap f1 (fmap f2 (fmap f3 parser))

-- Simply becomes:

f1 <$> f2 <$> f3 <$> parser

And to test that this works as expected, let’s write a few helper functions:

import Text.Read

charToStr :: Char -> String

charToStr c = [c]

strToInt :: String -> Int

strToInt x = case (readMaybe x) of

Nothing -> error "Cannot convert to Int"

Just i -> i

Now we can we should test that fmap works as expected!

parse (charToStr <$> (term 'a')) "abc" -- Just ("a","bc")

parse (charToStr <$> (term 'a')) "123" -- Nothing

parse (strToInt <$> charToStr <$> digit) "6th" -- Just (6,"th")

parse (strToInt <$> charToStr <$> digit) "" -- Nothing

3

Part 3: Parser as an Applicative

We might assume that requiring a Parser to have the Function restriction would be enough to easily build
larger parsers, but we run into a problem when we want to apply a function to a longer sequence of parsers.
This comes up quite frequently: say we want to parse one thing, and then parse another thing off of the
input sequence. We could, of course write a function which does this using knowledge of how Parser was
built, but say we want to keep things more general.
This is to say: If we have a function and we apply it to f a and f b, is there a way to get f c?

g :: a -> (b -> c)

fmap g :: f a -> f (b -> c)

fmap g (f a) :: f (b -> c)

fmap g (f a) (f b) :: ??? -- We would like this to be: (f c)

It doesn’t look like being a functor is enough! We also need to define an addional restruction on f, which
makes it Applicative, which is to say, allows us to define an operation to convert (f (b -> c)) (f b) into
f c. Luckily the Control.Applicative package gives us a nice general method of doing this!

import Control.Applicative

instance Applicative Parser where

pure a = Parser (\s -> Just (a, s))

(Parser aToB) <*> parserA = {- Insert your function here -}

Your implementation of <*> should return a new Parser which will first parse according to aToB. If that fails
then the newly constructed parser should also fail. If that parser succeeds, then then new parser should then
user the returned function in conjugation with parserA to parse what remains of the input.

combineTwoChars :: Char -> Char -> String

combineTwoChars a b = [a] ++ [b]

strAppend :: Char -> String -> String

strAppend c st = st ++ [c]

parse (combineTwoChars <$> (term 'a') <*> (term 'b')) "abc" -- Just ("ab","c")

parse (strAppend <$> (pure "") <*> (term 'a')) "abc" -- Just ("a","bc")

parse (strAppend <$> (pure "") <*> (term 'c')) "abc" -- Nothing

parse (strToInt <$> (strAppend <$> (strAppend <$> (pure "") <*> digit) <*> digit)) "123"

-- Just (12,"3")

While this let’s us build some Parsers, we are still missing a little bit of power: choice. Luckily Haskell’s
Applicative module also defines the Alternative class.

instance Alternative Parser where

empty = Parser (\s -> Nothing)

Parser p1 <|> Parser p2 = {- Your implementation here -}

Write an implementation for <|> which first tries to parse according to Parser p1 and if that fails, then
tries to parse according to Parser p2. This is an example of a “prioritized choice” operator from parsing
theory.

parse ((term '1') <|> (term '2')) "123" -- Just ('1',"23")

parse ((term '1') <|> (term '2')) "234" -- Just ('2',"34")

parse ((term '1') <|> (term '2')) "345" -- Nothing

4

Part 4: Building Bigger Parsers

We can now use rules we have built for our Parser type to build bigger parsers! Consider wanting to build
an operator greedyStar2 which parses zero or more of some object. We could build it using our knowledge
of Parser:

greedyStar :: Parser a -> Parser [a]

greedyStar parseExp = Parser f where

f s = case (parse parseExp s) of

Nothing -> Just ([], s)

Just (c, remaining) ->

case (parse (greedyStar parseExp) remaining) of

Nothing -> Just ([c], remaining)

Just (rest, final) -> Just ([c] ++ rest, final)

Or we could make it far more simply (and less prone to error) using the type functions we know Parser is
an instance of:

greedyStar :: Parser a -> Parser [a]

greedyStar p = (:) <$> p <*> greedyStar p <|> pure []

And testing this out, we get what we exect:

parse (greedyStar (term '1')) "1101" -- Just ("11","01")

parse (greedyStar digit) "abc" -- Just ("","abc")

parse (strToInt <$> greedyStar digit) "123" -- Just (123,"")

Just using the functions you have already defined (and small in-line helper functions – I.e. without using
the definition of Parser) create three more parsers:

1. greedyPlus: which is like greedyStar but parses one or more of an object instead of zero or more.

2. integer: which parses an integer.

3. whiteSpace: which just strips off any amount of whitespace from the front of the string.

parse (greedyPlus digit) "123a" -- Just ("123","a")

parse (greedyPlus digit) "b456" -- Nothing

parse integer "12ab" -- Just (12,"ab")

parse integer "-456" -- Just (-456,"")

parse integer "-00-" -- Just (0,"-")

parse integer "--7cd" -- Nothing

parse whiteSpace " \t\nhello! :)" -- Just ((),"hello! :)")

parse whiteSpace "42" -- Just ((),"42")

2To those of you who have studied parsing theory before, this gets it’s name from the Kleene Star operator. While regular
expressing and context free grammars make use of a non-deterministic choice, our Alternative definition implements the
prioritized choice. This means our star operator is greedy leading to a grammar language closer to Parsing Expression Grammars.

5

Part 5: Integer Calculator

We can use what we have built to create even more complex parsers. Consider a basic integer calculator
which must be wary of matching parenthesis and consider order of operations: trying to build something
from scratch might make this process daunting and error prone, but by building off of the smaller parsers we
already have, this is not so bad! Classically a calculator will happen in two steps: parsing into an abstract
syntax tree (AST) and then collapsing the tree via execution of arithmetic operation. In our case, the trees
are simple enough we can do this in one step!

Write a parser intCalculator which takes in a string and either returns an int (the calculated value) if the
parse was successful and nothing otherwise. You should ignore all white space and support the following
operations: {+,−, ∗, /} as well as properly match parenthesis.

Some tips:

• Far parsers p2 and p4 with the same type, and parsers p1 and p3, the following are all equivalent:

p4 = (\a1 a2 a3 -> a2) <$> p1 <*> p2 <*> p3

p4 = (\a1 a2 -> a2) <$> p1 <*> ((\a1 a2 -> a1) <$> p2 <*> p3)

p4 = flip const <$> p1 <*> (const <$> p2 <*> p3)

p4 = p1 *> p2 <* p3

This is because Applicative f also gives us the operations <* and *> which each check the parse is
correct and implicitly fmap const and flip const over the results, respectively.

• Create several mutually recursive smaller parsers (one for * and /, one for + and -, etc...). Because of
associativity, something like:

addExp = (+) <$> multExp <* whiteSpace <* term '+' <* whiteSpace <*> addExp <|> ...

Won’t work (you’ll end up with right associative parsing but math is, for better or worse, left associa-
tive). Instead you might consider fmap-ing foldl (flip ($)) onto some expression (starting value)
and a list of Int -> Int each of which partially apply their function to the second argument; things
like flip (-) might be useful!

• For division, you may use the div function instead of / as integer division is easier than fractional
division. You may also let the program error out (or whatever behavior you like) if it divides by zero.

parse intCalculator " 8 " -- Just (8,"")

parse intCalculator "1 2" -- Nothing

parse intCalculator " \n 5 \t\r * \n \t -4 " -- Just (-20,"")

parse intCalculator "3 + -4 + 2" -- Just (1,"")

parse intCalculator "7 - 2 - 5" -- Just (0,"")

parse intCalculator "2+1*3/2" -- Just (3,"")

parse intCalculator "(1--2) * (4 + -1) " -- Just (9,"")

parse intCalculator "7 - - 2" -- Nothing

parse intCalculator "1 + 2 * 3 - 4 * 5 / 6 + (7 - 8) * 9" -- Just (-5,"")

parse intCalculator "72 / 5 / 3 / 4" -- Just (1,"")

6

